

MEIRUIKE INSTRUMENT

Manual 使用说明书

RK8530系列 直流电子负载说明书

深圳市美瑞克电子科技有限公司

目	录
티	汞

第一章	概述1
	1.1 简介1
	1.2 主要特点
	1.3 技术参数 2
第二章	快速入门
	2.1 前面板介绍
	2.2 后面板介绍 5
	2.3 安装
	2.4 连接方式 7
第三章	功能介绍
	3.1 本地/远程操作模式 9
	3.2 定态测试功能 9
	3.2.1 定电流模式 9
	3.2.2 定电压模式 11
	3.2.3 定电阻模式 12
	3.2.4 定功率模式
	3.3 动态测试功能 14
	3.4 斜率与最小转换时间 16
	3.5 输入控制 17
	3.6 短路模拟 17
	3.7 系统菜单配置
	3.8 设置菜单配置 19
	3.9 触发操作 20
	3.10 Von 与 Voff
	3.11 电流限制
	3.12 电压远端补偿
	3.13 电流监控
	3.14 模拟编程
	3.15 瞬时功率倍增 23
	3.16 保护
	3.17 序列测试功能 25
	3.18 放电测试功能
	3.19 OCP 测试功能
	3. 20. OPP 测试功能 30
	3.21 电池内阻测试功能
	3.22 负载效应测试功能
	3.23 LED 模拟测试功能 34
	3.24 动态扫频测试功能 36

	3. 25	Wave 波形输出功能	37
	3. 26	复合操作模式	38
	3. 27	并机	39
	3. 28	V _{p+} /V _p -捕获	41
	3. 29	时间测量	42
	3. 30	保存与调用	44
	3. 31	掉电保存	45
	3. 32	外部控制信号	45
	3. 33	输出信号	46
第四章	自动测	则试教程	47
	4. 1	编辑自动测试文件	47
	4. 2	运行自动测试文件	49
	4. 3	自启动	49
第五章	通讯介	下绍	50
	5.1	通讯配置	50
	5.2	接口定义	51
	5. 2. 1	RS485 与 CAN	51
	5. 2. 2	USB(串口)	51
第六章	SCPIJ	上位机通讯	52
第七章	MODBU	S通讯协议	82
第八章	故障核	查	87
附录	とA 功能	能与对应版本	88
附录	とB 电i	也拉载注意事项	89
第九章	保修及	2 附件	90

第一章 概述

1.1. 简介

RK8530系列直流电子负载,是美瑞克电子研发设计、制造的一款高性能、 高功率密度电子负载。精度高、响应快。丰富多样的测试功能,支持动态扫频、 级联并机功能,应用范围极广。体积小,却具备强大的带载能力。

该系列产品具备RS232/RS485/USB/LAN 等多种通讯接口,支持 SCP1、 Modbus通讯协议,可满足用户的自主编程开发需求。作为美瑞克的重点产品, 其外观新颖、生产工艺科学严谨,高性能、高精度、高可靠性使其相比同类产品, 更具性价比。

应用领域

- 电源产品测试
- 科研机构
- 汽车电子
- 航空航天
- 船舶
- 太阳能电池
- 燃料电池等行业

1.2. 主要特点

- 功率密度高达3.2kW/2U
- 电压范围0-600V
- 电流范围50A/800W, 100A/1600W, 150A/2400W, 200A/3200W
- 电压精度为(0.025%+0.025%F.S.)
- 电流精度为(0.05%+0.05%F.S.)
- 采样速度为500kHz
- 50kHz动态电流, 30kHz动态扫描功能
- 支持主/从并机,最大并机功率32kW
- 带载模式CC、CV、CR、CP、CV+CC、CR+CC、CP+CC
- 短路模拟,支持功率瞬时放大
- OCP、OPP、LED模拟、负载效应、电池内阻、电池放电测试功能
- 具有时间(Timing)测量, 电压峰峰值(Vpk)测量
- 序列测试支持20个文件,每个文件50步,支持文件链接
- 自动测试支持20个文件,每个文件50步,支持自启动
- OPP、OCP、OVP、OT、RV等全方位保护功能
- 外部模拟编程输入与电流监视输出,且具备高压隔离能力
- TFT彩色液晶显示屏,中英文菜单界面
- 标配RS485、LAN、USB(串口)通讯接口,选配CAN
- 支持SCP1、Modbus 通讯协议

参数	机型	RK853	80A	RK853	30B	RK8530C		RK8530D	
	负载电压	600'	v	600V		600V		600V	
额定	负载电流	200A		150A		100A		50A	
参数	负载功率	3200W		2400W		1600W		800W	
	最低操作 电压				6.	5V			
	量程	120V	600V	120V	600V	120V	600V	120V	600V
CV 模 式	分辨率	2mV	1 OmV	2mV	10mV	2mV	10mV	2mV	10mV
	精度	0. 025%+0. 0	025%F. S.	0. 025%+0. (025%F. S.	0. 025%+0. (025%F. S.	0. 025%+0. (025%F. S.
	量程	20A	200A	15A	150A	10A	100A	5A	50A
CC 模 式	分辨率	0. 4mA	4mA	0. 3mA	ЗmА	0. 2mA	2mA	0. 1mA	1mA
	精度	0. 05%+0. 05%F. S.		0. 05%+0. 05%F. S.		0. 05%+0. 05%F. S.		0. 05%+0. 05%F. S.	
CR 模	量程	0. 112~ 600 Ω	1. 12~ 3000 Ω	0. 149~ 800 Ω	1. 49~ 4000 Ω	0. 223∼ 1200 Ω	2. 23~ 6000 Ω	0. 446~ 2400 Ω	4. 46∼ 12000 Ω
式	精度	Vin/Rset*(0.2%)+0.2 %IF.S.		Vin/Rset*((%IF.). 2%) +0. 2 S.	Vin/Rset*((%IF.). 2%) +0. 2 S.	Vin/Rset*((%IF.). 2%) +0. 2 S.
CP 模	量程	3200W		2400	W	1600	W	800	W
式	精度	0. 2%+0. 2% F. S.		0. 2%+0. 2	% F.S.	0. 2%+0. 2	% F.S.	0. 2%+0. 2% F. S.	
	T1& T2	10us~60s		10us~	~60s	10us~	⁄60s	10us~	~60s
动态	分辨率	2us	;	2us		2us		2us	
模式	精度	1us+20	PPM	1us+20PPM		1us+20PPM		1us+20PPM	
	上升/下降 斜率	0. 0001∼ 0. 2A∕us	0. 001 ~ 2A/us	0. 0001∼ 0. 15A∕us	0.001 ~ 1.5A/u s	0. 0001∼ 0. 1A∕us	0. 001 ~ 1A/us	0. 0001∼ 0. 05A∕us	0. 001 ~ 0. 5A/u s
电压	量程	120V	600V	120V	600V	120V	600V	120V	600V
回读	分辨率	2mV	10mV	2mV	10mV	2mV	10mV	2mV	10mV

1.3.技术参数

RK8530系列仪器用户手册

	精度	0. 025%+0. 025%F. S. 0. 025%+0. 025%F. S.		0. 025%+0. 025%F. S.		0. 025%+0. 025%F. S.				
	量程	20A	200A	15A	150A	10A	100A	5A	50A	
电流 回读	分辨率	0. 4mA	4mA	0. 3mA	ЗmА	0. 2mA	2mA	0. 1mA	1mA	
	精度	0. 05%+0. 05%F. S.		0. 05%+0. 05%F. S. 0. 05%+0. 05%F. S.		05%F. S.	0. 05%+0. 05%F. S.			
	过压(0V)				63	οv				
保护	过流(0C)	220A		165A		110A		55A		
	过功率 (0P)	3360W		2520W		1680W		840W		
	过温(OT)	95°C		95°C		95°	95°C		95°C	
通讯接口		USB、RS232、LAN、RS485								
屏幕尺寸		3.5寸								
尺寸 (W*D*H)		480*560*123		480*56	0*123	480*56	0*123	480*560)*123	
重量(KG)		20. 25		18. 30		16. 35		14. 40		
标配附件		RK00004电源线、RK00097六类网络跳线、RK00098接线铜片护罩、组合螺丝、RK00099插拔式端子								
选西	记附件	RK00003 RS232转USB线、RK00006 USB转方口连接线、RK00031 USB转RS485母串口线工业级								

- 注: 1. 在定功率定电阻工作模式下,要求输入的电压和电流大于满量程的10%,此时的精度才符合 表中的参数,否则可以超出精度范围。
 - 2. 电压大小档位判断以开始工作前初始值为准。
 - 3. 如果工作电压超过额定电压 1.1 倍,将对器件造成永久性损坏。

第二章 快速入门

2.1. 前面板介绍

- 1. 电源开关
- 用于打开/关闭电子负载设备
- 2. CC模式
- 定电流
- 3. CR模式
- 定电阻
- 4. CCD模式 动态电流
- 5.CV模式
- 定电压
- 6. CP模式 定功率
- ----
- 7. Trigger 触发
- 8. Range
 - 量程切换
- 9.Short
- 短路模拟
- 10.Shift
 - 按下 (屏幕有显示) 后可实现其他按键的第二功能
- 11. 数字键盘
 - 数字输入键,与shift键组合实现第二功能
- 12. ←

退格键, 输入或设置参数后进行确认

- 13. 。
 - 点号
- 14. **†**
- 上移动键
- 15.↓
 下移动键
- 16. ←
- 左移动键
- 17. →
- 右移动键
- 18. Esc
 - 退出键或返回上级菜单

 19. Enter 确认键,输入或设置参数后进行确认
 20. ON 带载/卸载
 21. 脉冲旋钮

用于调节参数大小

Shift+按键复用功能介绍

Shift + 5 (Recall):用于调用已保存的功能模式参数(系统菜单其它设定中快速调用 设置为开启,且在测试页面下处于非带载状态和非聚焦状态下才有效)
 Shift + 6 (PROT-CLR):清除保护
 Shift + 0 (Save):用于保存当前功能模式参数(系统菜单其它设定中快速调用设置为 开启,且在测试页面下处于非带载状态和非聚焦状态下才有效)
 Shift + 8 (Test):选择高级测试功能
 Shift + 9 (Menu):用于进入菜单设置页面
 Shift + . (Lock):用于屏幕测量页面锁定和解锁,锁定后其它按键动作无效

2.2. 后面板介绍

- 1. 电压远端采样端子
 - +S:远端电压采样正端
 - -S:远端电压采样负端
- 2. 网络通讯接口
- 外部模拟编程输入和电流监视输出 ISET:外部模拟编程输入 IMON:电流监视输出
- 4. RS485/CAN/外部控制信号接口

485A: 485通讯A端口 485B: 485通讯B端口 CANH: CAN通讯L端口 GND: 信号地 OUT: 复合信号输出口 INHIBIT: 外部控制信号输入口 IN: 复合信号输入口 GND: 信号地 PO-A: 并机通讯A端口 PO-B: 并机通讯B端口

5. USB接口

用于系统程序升级和上位机通讯, 或其他预留功能

- 6. RS232S接口 外部通讯接口,用于实现远程控制
- 7. 并机模拟接口
- 8. 电源插座 AC220/110V 交流电源插座

5

2.3. 安装

2.3.1. 供电前检查

安装时请确保电子负载进风口和出风口与其它物体保持1米以上的空隙,以便空气流通。

请勿放置重量>40kg的物品于负载箱体上。

△ 警告:为防止触电和损坏仪器,请在上电前确认以下事项。

- 确保AC供电电压与本负载的额定AC输入电压相匹配。若负载工作电压支持110V或220V 两种方式,请检查交流电压输入切换开关档位是否与供电电压相匹配
- 在插入电源线之前,请确保负载电源开关处于关闭状态
- 请使用由本公司提供的电源线
- 电子负载通过三芯电源线提供机壳接地。操作负载之前,请确认负载接地良好

2.3.2. AC 输入要求

AC 电压输入范围: 220VAC ±10%, 47H z[~]63H z。

2.3.3. 开机自检

本机接入 220V/110V 电源,按下后面板的电源按钮,仪器启动,首先进入自检测过程,提示如下(以RK8530 作为例子,其它型号仪器启动时将显示相应的型号名称):

项目	TFT LCD 显示	解释
开机自检时	美瑞克电子	系统自检。
自检后	xxxxxxxV xxxxxxA xxxxxxxA xxxxxxXW xxxxxxX	显示为实际输入电压、电流、功率、设置参数值及当前状态。

如果负载不能启动

用下面的方法可以帮助来解决在打开负载时您可能遇到的问题。

- z 检测220V/110V 电源是否正常,检查电源线是否完好,电源开关是否被打开。
- z 检查负载的保险丝是否烧坏

若保险丝烧坏,请您用5A/250V的保险管替换。保险丝的更换方法如下:

用平口螺丝刀将负载的后面板上电源输入插座下方的小塑料盖撬开,就可以看到保险管,请使用上述规格相符的保险丝。

如果仍不能启动仪器,请联系我们的售后人员,仪器内没有客户可以调整的元器件,请 不要对仪器自行维修或改装,否则,我公司将不承担保修义务,和由此引发的任何责任。

2.4. 连接方式

2.4.1. 输入连接

①警告:为符合安规要求,电子负载输入连线必须足以承受连接其他设备的最大短路电流,而且不产生过热现象。

输入连接是由负载后面板的 + 和 - 端与被测设备相连。进行输入连接时,主要须注意 输入连线的线径、长度和极性。避免线径过细而影响测试的精确度,且较大的发热量可能引 起安全事故。连接线一般采用标准铜线,且必须短而粗,保证负载工作时线缆上的压降不超 过 0.5V。

注意:要符合更高斜率的负载规格要求和性能,从被测设备到负载间的连线电感必须 小于5.0uH。

2.4.2. 采样连接

负载具有电压远端采样和本地采样两种电压采样方式。可在界面菜单"应用设定"→ "电压采样"选项切换实现。

远端

负载工作时,输入电流会在端口与导线的接触电阻上产生一定压降,这将影响负载的电压测量准确度。建议使用远端采样方式。远端采样需要将远端采样端子(+S和-S)与被测设备的电压输出端直接连接,且尽可能双绞连接线。

2.4.3. 并机连接

当待测电源的功率或电流超过电子负载的规格时,可将2台或更多台数负载进行并联 以增加带载电流和带载功率。

如上图所示,并机需要连接3类线缆:

- 1. 使用较粗的功率线缆将负载的输入正极连接,输入负极连接;
- 2. 使用并机模拟信号线缆将负载的模拟信号端子连接;
- 使用双绞线线将负载的RS485并机通讯接口连接(注:若并机通讯异常时需接上120Ω终端电阻)。

第三章 功能设置

本章对电子负载的主要功能与特性进行说明。阅读本章,您将对 RK8530 系列电子负载有更深的认识。

3.1. 本地/远程操作模式

负载提供两种操作模式:本地操作和远程操作。本地操作模式下,用户通过前面板的键 盘与旋钮进行操作,通过液晶显示屏查看负载状态;远程操作模式下,用户主要通过负载提 供的通讯接口和编程命令执行设置与操作。

本地操作模式

负载开机后,默认为本地操作模式。在本地操作模式下,用户通过前面板键盘操作负载。液晶显示屏幕为用户提供参数查看、测量显示和状态指示等显示功能。

电子负载的部分参数只能在本地模式下设置,包括:

远程操作模式

要进入远程操作模式,请使用正确的通讯线缆连接 PC 与负载。通讯参数必须与控制设备设置一致。收到编程命令,负载自动从本地操作模式进入远程操作模式。

远程操作模式下,仅能通过编程命令控制负载。若要返回本地操作模式,按Enter 键即可。

3.2. 定态测试功能

RK8530 系列负载具有 4 种定态带载模式:定电流(CC)、定电压(CV)、定电阻(CR)和定功率(CP)。

3.2.1. 定电流模式

按 CC 键, 切换至定电流模式。

图 3-1 定电流功能界面

在定电流模式下,不管输入电压是否改变,负载始终消耗一个恒定的电流。工作曲线如 下图所示。

切换电流量程

定电流模式具有高、低两个量程,低量程具有较高的分辨率,而高量程能带载更大的电流。

按 Range 键, 切换 CC 模式高低量程。

状态区域显示负载当前的工作模式以及量程,当工作在高量程时,显示"CCH",而工作 在低量程时,屏幕显示"CCL"。

设置带载电流

按 Enter 键进入设置状态。转动旋钮改变电流值,或者按数字键输入电流值,再按 Enter键使输入数值生效。

设置限制电流

RK8530 提供了"电流上限"与"电流下限"设置项目。当设置这两项参数为非0值时, 定电流模式下的电流设置范围便限制在电流上限与电流下限之间。此功能可防止用户误操作, 保护被测设备。

- 1. 按 Shift + 9 (Menu) 键,进入菜单设置界面;
- 2. 选择"设置"->"限制设定"子菜单,按 ▷键进入限制设定页面;
- 3. 选择"电流上限"与"电流下限"进行设置。

3.2.2. 定电压模式

按 CV 功能键, 切换至定电压模式。

图 3-3 定电压功能界面

在定电压模式下,负载将消耗足够的电流来使输入电压维持在设定值。工作曲线如下图 所示。

图 3-4 定电压模式

切换电压量程

定电压模式具有高、低两个量程,低量程具有较高的分辨率,而高量程能带载更高的电压。

按 Range 键, 切换 CV 模式高低量程。

状态区域显示负载当前的工作模式以及量程,当负载工作在高量程时,显示"CVH",而 工作在低量程时,屏幕显示"CVL"。

设置带载电压

按 Enter 键进入设置状态,转动旋钮改变电压值,或者按数字键输入电压值,再按 Enter键使输入数值生效。

设置响应速度

定电压模式有快速与慢速2档响应速度供测试使用。

- 1. 按 Shift + 9 (Menu) 键, 进入菜单设置界面;
- 2. 选择"设置"->"应用设定"子菜单,按 ▷键进入应用设定页面;
- 3. 选择"恒压速度"进行设置。

设置限制电压

RK8530 提供了"电压上限"与"电压下限"设置项目。当设置这两项参数为非0值时, 定电压模式下的电压设置范围便限制在电压上限与电压下限之间。此功能可防止用户误操作, 保护被测设备。

- 1. 按 Shift + 9 (Menu) 键, 进入菜单设置界面;
- 2. 选择"设置"->"限制设定"子菜单,按 ▷键进入限制设定页面;
- 3. 选择"电压上限"与"电压下限",进行设置。

3.2.3. 定电阻模式

按 CR 键, 切换至定电阻模式。

图 3-5 定电阻功能界面

在定电阻模式下,负载等效为一个恒定的电阻,输入电流会随输入电压的改变而调整, 工作曲线如下图所示。

切换电流量程

定电阻模式具有高、低两个量程。

按 Range 键, 切换 CR 模式高低量程。

状态区域显示负载当前的工作模式以及量程,当工作在高量程时,显示"CRH",而工作 在低量程时,屏幕显示"CRL"。

设置带载电阻

按 Enter键进入设置状态,转动旋钮改变电阻值,或者按数字键输入电阻值,再按 Enter 键使输入数值生效。

设置限制电阻

RK8530 提供了"电阻上限"与"电阻下限"设置项目。当设置这两项参数为非0值时, 定电阻模式下的电阻设置范围便限制在电阻上限与电阻下限之间。此功能可防止用户误操作, 保护被测设备。

- 1. 按 Shift + 9 (Menu) 键, 进入菜单设置界面;
- 2. 选择"设置"->"限制设定"子菜单,按 ▷键进入限制设定页面;
- 3. 选择"电阻上限"与"电阻下限",进行设置。

3.2.4. 定功率模式

按 CP 键, 切换至定功率模式。

图 3-7 定功率功能界面

在定功率模式下,负载将消耗一个恒定的功率。输入电流会随输入电压的改变而调整以 确保消耗功率不变,工作曲线如下图所示。

图 3-8 定功率模式

定功率模式只有1个量程。在定功率模式,状态显示为"CP"。

设置带载功率

按 Enter 键进入设置状态,转动旋钮改变功率值,或者按数字键输入功率值,再按 Enter键使输入数值生效。

设置限制功率

RK8530 提供了"功率上限"与"功率下限"设置项目。当设置这两项参数为非0值时, 定功率模式下的功率设置范围便限制在功率上限与功率下限之间。此功能可防止用户误操作, 保护被测设备。

- 1. 按 Shift + 9 (Menu) 键, 进入菜单设置界面;
- 2. 选择"设置"->"限制设定"子菜单,按▷键进入限制设定页面;
- 3. 选择"功率上限"与"功率下限",进行设置。

3.3. 动态测试功能

动态测试功能包含动态电流、动态电阻和动态功率,可根据设定规则使负载在两个设定 值(主值与瞬态)间切换,适用于电源动态特性测试。动态测试具有连续(Continuous)、 脉冲(Pulse)和翻转(Toggle)三种工作模式,动态电流频率最高 50kHz。 按 CCD 键,切换至动态电流功能,如下图所示。

图 3-9 动态电流功能

连续模式(Continuous)

连续模式下,电子负载会在电流-1与电流-2之间连续切换。除非退出动态测试或关闭 负载,否则负载将按设定的参数一直执行下去,此方式不受触发信号的影响。

图 3-10 连续模式

- 1. 设置"运行方式"为 CONT;
- 2. 设置"电流-1"和"电流-2";
- 3. 设置"脉宽-1"和"脉宽-2",其范围是 0.01~60000ms;
- 4. 设置"上升斜率"与"下降斜率",单位是 A/us;
- 5. 按 ON 键开始测试。

脉冲模式(Pulse)

脉冲模式下, 若收到触发信号, 负载立即由电流-1 切换至电流-2, 维持脉宽-2 时间后回到电流-1。

图 3-11 脉冲模式

- 1. 设置"运行方式"为 PULS;
- 2. 设置"电流-1"和"电流-2";
- 3. 设置"上升斜率"与"下降斜率";
- 4. 设置"脉宽-2", 其范围是 0.01~60000ms;
- 按 ON 键开始测试。
 注意:当斜率设置与脉宽设置有冲突时,优先保证脉宽。

翻转模式(Toggle)

翻转模式下, 若收到触发信号, 负载将在电流-1 与电流-2 之间切换, 切换时间由斜率 决定。

图 3-12 翻转模式

- 1. 设置动态"运行方式"为 TOGG;
- 2. 设置"电流-1"和"电流-2";
- 3. 设置"上升斜率"与"下降斜率";
- 4. 按 ON 键开始测试;
- 5. 按 Trigger 键产生触发信号切换带载电流。

3.4. 斜率与最小转换时间

电流斜率定义了定电流模式下,两个电流设定值之间切换的速度。可通过改变斜率的大 小来设定负载从一个电流值转换到另一电流值的时间。下图说明了斜率设定值与实际转换时 间的关系。

图 3-13 斜率与时间转换时间的关系

注意: 当负载从小电流值切换到大电流值时,最小转换时间等于电流差值除以转换斜 率,但负载从大电流切换到小电流值时,由于负载的小信号带宽限制,最小转换时间会比 按公式计算的时间长。

3.5. 输入控制

负载上电后处于未带载的状态,可以通过前面板的 ON 键来控制负载的输入开关。

- ON 键指示灯亮,表示输入打开,屏幕上显示实时电压电流等信息;
- ON 键指示灯灭, 表示输入关闭。

屏幕显示输入开关状态,用户也可以通过按键指示灯观看输入是打开还是关闭。

3.6. 短路模拟

在定态测试功能与动态测试功能下,电子负载可模拟短路操作,以测试被测设备的保护性能。负载短路时所消耗的电流取决于当前负载的工作模式及电流量程。CC、CR与CP模式下,最大短路电流为当前量程的最大值;CV模式下,短路操作相当于设置负载的恒电压值为OV。短路操作不改变当前设定值,退出短路操作时,负载返回到之前的状态。

短路按键行为可以配置 Toggle (切换) 和 Hold (保持) 两种方式。在 Toggle 方式下, 按 Short 键使能短路, 再按 Short 键失能短路。在 Hold 方式下, 按住 Short 键使能短路, 松开 Short 键退出短路状态。

操作步骤

- 1. 按 ON 键开启输入;
- 2. 按 Short 键,使能短路状态。

Short 键行为设置

- 1. 按 Shift + 9 (Menu) 键,进入菜单设置界面;
- 4. 选择"设置"->"应用设定"子菜单,按 ▷ 键进入设定页面;
- 5. 选择"短路按键"进行设置。

3.7. 系统菜单配置

按 Shift + (Menu) 键,进入菜单设置界面,按方向键选择"系统"设置菜单后按 Esc键进入子菜单设置。

菜单	选项	功能
通讯设定	IP 地址	网络通讯 IP 地址
	子网掩码	网络通讯子网掩码
	串口速率	RS 485 波特率
	校验方式	RS 485 校验, 可设置为无校验、奇校验或偶校验
	设备地址	Modbus 通讯协议的设备地址
	通讯协议	可选 Modbus 或 SCP1
出厂设定	恢复出厂	将系统数据恢复到出厂默认状态
其他设定	系统语言	界面语言,支持简体、繁体和英文三种
	键盘声音	开启或关闭键盘声音
	掉电保存	输入参数是保存到存储器还是不保存
	快速调用	开启或关闭快速调用

3.8. 设置菜单配置

按 Shift + 9 (Menu)键,进入菜单设置界面,按方向键选择"设置"菜单后按Esc 键进入子菜单设置。

菜单	选项	功能			
应用设定	电压采样	电压采样方式, 可选近端或远端			
	恒压速度	可选快速或慢速			
	超前调节	定电压模式下电压环路调节微分开关,开启后可增加电压			
		环路响应速度			
	上电带载	设为关闭,开机时输入关闭状态;设为开启同时打开"掉			
		电保存",则开机时负载自动开启输入			
	模拟编程	外部模拟信号控制使能(仅在定态 CCH 生效)			
	带载时间	连续带载时间,范围是0~999999s			
	外部控制	外部输入信号的行为,可选 Trigger/Toggle/Hold/Halt			
	短路按键	短路按键行为配置, Toggle/Hold			
	采样速率	电压电流传输速率设置,可选 1000Hz、500Hz、200Hz、			
		100Hz、10Hz			
	定态斜率	定态斜率使能,开启后在定态CC 界面可设置斜率			
	功率增倍	带载功率瞬时倍增开关,开启后短时间内增大带载功率			
	软启动	启动延迟时间设置: 0~999999ms			
	斜率速度	斜率单位设置: 可选A(V)/us、A(V)/ms			
自动设定	接入电压	自动测试功能下, 被测设备接入时的判断电压			
	断开电压	自动测试功能下, 被测设备取下时的判断电压			
	自动显示	自动测试功能下,测试结果显示方式配置			
		Default:显示上次测试结果;			
		1~10Sec:测量结果显示维持时间;			
		Cut Off: 取下被测设备后清除测量结果			
时间测量	起始信号	可选 Volt Curr、Ext			
	起始方向	可选 Rise、Fall			
	起始主值	起始信号触发阀值			
	结束信号	可选 Volt Curr、Ext			
	结束方向	可选 Rise、Fall			
	结束主值	结束信号触发阀值			
并 机	主从设定	可设为主机或1~9号从机			
	从机数目	范围 1~9 台			
	主从控制	开启或关闭并机模式(主从机都需要设置为开启才生效)			
限制设定	电压上限	定态电压功能的电压操作上限			
	电压下限	定态电压功能的电压操作下限			
	电流上限	定态电流功能的电流操作上限			
	电流下限	定态电流功能的电流操作下限			
	电阻上限	定态电阻功能的电阻操作上限			
	电阻下限	定态电阻功能的电阻操作下限			

	功率上限	定态功率功能的功率操作上限
	功率下限	定态功率功能的功率操作下限
保护设定	带载电压	Von 电压值
	卸载电压	Voff 电压值
	过压保护	OVP 保护点,设为0关闭过压保护
	过流保护	OCP 保护点,设为0关闭过流保护
	功率保护	OPP 保护点,设为 0 关闭功率保护
	欠压保护	LVP 保护点,设为0关闭欠压保护
	电流限制	限制带载电流,范围 0~102% 额定电流
	超时时间	通讯超时时间,范围 0.0~60.0s,设为 0 关闭超时保护
	缺电压	可选开启和关闭

3.9. 触发操作

动态测试和自动测试需要用到触发功能。触发信号可使动态脉冲模式产生脉冲,使动态翻转模式产生电流切换,或控制自动测试步骤运行至下一步。RK8530系列负载具有3种触发信号源。

- 键盘触发,按 Triger 键,将进行一次触发操作;
- 外部触发(TTL 电平),后面板上的INH端口可设置为触发信号输入端子。当"外部控制"配置为Trigger时,在INH端口输入施加一个低脉冲,负载将进行一次触发操作;
- 上位机触发,负载收到触发命令后,将进行一次触发操作。

注意: 触发源无需配置, 键盘触发、外部触发和总线触发同时有效。

3.10. Von 与 Voff

被测电源输出电压上升或下降速度慢时,此功能可对其实施保护。被测电源电压上升至 高于 Von 时,开始带载; 电压低于 Voff 时,自动卸载; 当电压再次高于 Von 时,负载又将 带载。工作曲线如下图所示。

图 3-14Von 与 Voff 带载波形

- 按 Shift + 9 (Menu) 键,进入菜单设置界面,选择"设置"项,按Esc键弹出子 菜单,移动光标至"保护设定"项,按 Esc 键进入保护参数设置界面;
- 设置"带载电压"与"卸载电压"。

注意:

- 1. Von与Voff设置仅在定态测试功能中有效;
- Von设为0,表示关闭带载电压功能。建议尽量避免设置为0值,当输入电源电压斜 率过高时,可能导致负载损坏;
- 3. 若要使用Voff功能,应设置Von为非0值,Voff为非0值,并且Von>Voff。

3.11. 电流限制

电流限制功能在定电压模式下可起到对被测物的保护作用。负载在定电压模式下带载时, 会以最大带载能力将输入电压控制到设定电压值。此时被测设备会产生较大过冲电流,而开 启了电流限制功能可有效减小过冲电流。

操作步骤

- 1. 按 Shift + 9 (Menu) 键,进入菜单设置界面;
- 2. 选择"设置"->"应用设定"->"保护设定",按 ▷键进入保护参数设置界面;
- 3. 选择"电流限制",按 Enter 键后输入电流限制值。

3.12. 电压远端补偿

S+和 S-为远端采样端子,用于电子负载采样系统提供远端电压信号。

当需要精确测量被测设备输出电压时,建议将负载设置为远端采样方式。端子 S+和 S-直接连接到被测设备的输出端,消除导线上的压降,从而得到较高的测量准确度。

操作步骤

- 1. 按 Shift + 9 (Menu) 键, 进入菜单设置界面;
- 2. 选择"设置"->"应用设定",按 ▷键弹出应用参数设置界面;
- 3. 选择"电压采样"进行设置,可选近端或远端。

注意:若采样方式选择远端模式,而远端采样端子 S+和 S-没有连接到被测设备输出端, 那么电子负载将无法正确测量端口电压,且定电压、定电阻和定功率功能也将无法工作。

3.13. 电流监控

后面板端子"I-MON""提供 0~10V 的电压输出信号,用来指示 0 到满量程的端口输入电流,输入电流值与端子上的输出电压值成正比例关系。输出电压精度为 0.5%+0.5%F.S.。

图 3-15 输出电压与输入电流关系

使用电流监视输出功能,用户可方便地使用外部数字电压表或示波器监视带载电流。

3.14. 模拟编程

后面板端子"I-SET"输入0~10V的外部模拟信号,可以控制0~Imax带载电流。输入模拟电压值与带载电流值成正比例关系,控制精度为0.5%+0.5%F.S.。

图 3-16 输入电压与带载电流关系

- 按 Shift + 9 (Menu) 键,进入菜单设置界面,选择"设置"->"应用设定"
 项,按 ▷进入应用设定界面;
- 移动光标至"模拟编程"项,按 Enter 键,设置为"开启"即可。

注意:

- 1. 模拟输入为隔离端口,最大耐受电压为 12V
- 2. 模拟信号带宽≤20K, 斜率小于 100V/ms
- 3. 若用此功能, 需在菜单"应用设定"中将"外部编程"选项设置为"开启"

3.15. 瞬时功率倍增

RK8530 允许短时间内带载功率超过额定功率,即用户可以操作负载在5秒内承受2倍额定功率的带载能力。该功能非常适合测试瞬时功率超过额定功率的场合,可以为用户节约成本。

操作步骤

- 1. 按 Shift + 9 (Menu) 键,进入菜单设置界面;
- 2. 选择"设置"->"应用设定",按 Enter 键弹出应用参数设置界面;
- 3. 将"功率增倍"设为开启。

为保证瞬时功率倍增能正常运行,请遵守以下注意事项。

注意:

- 1. 负载检测温度低于 35℃, "功率增倍"才能生效
- 2. 瞬时功率倍增功能单次有效, 一次 0n/0ff 后, 功率倍增自动关闭
- 3. 带载功率超过额定功率 5s 后, "功率增倍"自动关闭,再次开启须等待 60s
- 4. 并机后不支持瞬时功率倍增功能
- 5. 若不使用此功能,请将"功率增倍"设置为"关闭"
- 6. 带载功率超过额定功率后,风扇全速运转

3.16.保护

RK8530 系列负载具有以下几项保护功能。

过压保护

过流保护

过功率保护

过温度保护

输入反接保护

低压保护

通讯超时保护

当保护情况发生时,负载自动关闭输入,停止带载。屏幕显示具体的保护内容,同时蜂鸣器发出警报声。

按 Shift + 6 (PROT_CLR) 键可清除保护内容。

过电压保护

负载具有2种过电压保护:硬件过电压与软件过电压。

硬件过电压保护:当输入电压超过负载额定电压的 105%,将触发硬件过电压保护, 屏幕提示 "0V"。

软件过电压保护:负载提供"过压保护"选项供用户设置使用,相关配置项参考"设置菜单配置"之保护设定,设为0表示关闭软件过电压保护。当输入电压超过"过压保护"设定值时,将触发软件过电压保护,屏幕提示"0VP"。

过电流保护

负载具有2种过电流保护:硬件过电流与软件过电流。

硬件过电流保护:当输入电流超过负载额定电流的110%,将触发硬件过电流保护, 屏幕提示 "0C"。

软件过电流保护:负载提供"过流保护"选项供用户设置使用,相关配置项参考"设置菜单配置"之保护设定,设为0表示关闭软件过电流保护。当输入电流超过"过流保护"设定值时,将触发软件过电流保护,屏幕提示"0CP"。

过功率保护

负载具有2种过功率保护:硬件过功率与软件过功率。

硬件过功率保护:当输入功率超过负载额定功率的105%,将触发硬件过功率保护, 屏幕提示"0P"。

软件过功率保护:负载提供"功率保护"选项供用户设置使用,相关配置项参考"设置菜单配置"之保护设定,设为0表示关闭软件过功率保护。当输入功率超过"功率保护"设定值时,将触发软件过功率保护,屏幕提示"0PP"。

过温度保护

当负载内部功率器件温度超过 95℃,将触发过温度保护,屏幕提示"OT"。

输入反接保护

当输入电压极性反接时,将触发输入反接保护,屏幕提示"RV"。

低压保护

负载提供"欠压保护"选项供用户设置使用,相关配置项参考"设置菜单配置"之保护 设定,设为0表示关闭低压保护。当输入电压低于"欠压保护"设定值时,将触发低压保护, 屏幕提示"LVP"。

通讯超时保护

在使用上位机软件控制负载的情况下,如果出现通讯链路断开或是上位机软件工作异常, 将引起负载失去控制。这种情况可能会损坏被测设备。RK8530系列提供了通讯超时保护功能: 如果上位机一段时间没有跟负载通讯,那么负载将自动关闭输入,屏幕提示"CMF"。

3.17. 序列测试功能

序列测试功能用于模拟高速精准的电流波形。RK8530 系列负载提供 50 个序列文件, 每个文件最多支持 100 步。客户可选择 CCH、CCL、CVH、CVL、CRH、CRL 和 CP 七种拉载模式, 单步可设置斜率。在编辑序列单步时,用户只需设置带载电流和单步运行时间。序列单步时 间范围是 0.0001~99999s。

序列支持运行次数与链接文件:

运行次数:控制文件循环运行的次数,范围是 0~60000 次。运行次数设为 0,表 示该文件为无限循环。 链接序列:当前文件运行完成后,继续运行下一个序列文件。链接文件设为0,表 示没有链接,即当前文件运行完成后就停止序列运行。

编辑序列文件

- 1. 按 Shift + 9 (Menu) 键,进入菜单设置界面;
- 2. 选择"编辑"->"序列文件",按↓键进入序列文件选择界面;
- 3. 转动旋钮或输入数字,选择想要编辑的文件号,按 Enter 键进入编辑文件界面;

设置 系统	编辑 关于	
序列文件	文件号	01
自动文件	文件长度	01
	运行长度	00000
	链接序列	00
1/2		

图 3-17 序列文件编辑界面

- 4. 设置"文件长度", 按 Enter 确认;
- 5. 设置"运行次数", 按 Enter 确认;
- 6. 设置"链接序列",按 Enter 确认;
- 7. 设置"编辑步",按 Enter 确认;
- 8. 设置"带载模式",按 Enter 键确认;
- 9. 设置"电流设定",按 Enter 键确认;
- 10. 设置"单步斜率", 按 Enter 键确认;
- 11. 设置"单步时间", 按 Enter 键确认;按↓键翻页后继续编辑下一步;
- 12. 重复7~11步,直到所有步骤编程完成;
- 13. 所有步骤编辑后自动保存;
- 14. 按 Esc 键,退出序列文件编辑画面。

注意: 输入开启时不允许编辑序列文件。

运行序列文件

- 1. 按 Shift + 8 (Test) 键,进入 Test 功能选择画面;
- 2. 转动旋钮,选择"SEQ",按 Enter 键使能序列测试功能,屏幕显示序列测试运行画面;

图 3-18序列测试运行画面

3. 设置"文件号",按 Enter 键使之生效;

4. 按 ON 键开始序列测试。

回显区域"Step: XX"显示项目为序列当前运行至哪一步,"Cycle: XXXXX"显示项目为序列文件完整运行次数。

序列测试可实现任意复杂波形,例如下图所描述的波形,利用序列功能可轻松实现。

图 3-19 序列波形

3.18. 放电测试功能

放电测试功能用于测量电池电量,也可用于超级电容放电。放电测试支持3种放电模式: CC、CR和CP。放电过程中,负载测量其放电电量(单位Ah)、放电能量(单位Wh)和放电 时间(XX:XX:XX)。当电池电压低于"终止电压",或者放电电量达到设定值,亦或者达到设 定放电时间,负载将自动停止对电池放电。放电时间允许设置范围为 0~360000s,放电电 量允许设置范围为 0.0~999999Ah。

操作步骤

- 1. 按 Shift + 8 (Test) 键,进入 Test 功能选择界面;
- 2. 转动旋钮,选择"DISC",按 Enter键使能放电测试功能,屏幕显示放电测试运行 画面;

图 3-20 放电测试功能界面

- 3. 按照测试需求设置放电参数;
- 4. 按 ON 键开始放电测试;
- 5. 界面显示记录累计放电电量、放电能量、放电时间。

参数说明

参数名称	参数说明
放电模式	可选 CC、CR、CP
放电电流	选择为 CC 放电模式为恒定电流值进行放电
放电阻值	选择为 CR 放电模式为恒定电阻值进行放电
放电功率	选择为 CP 放电模式为恒定功率值进行放电
终止电压	电池电压低于设定参数,停止测试
终止电量	放电累计电量达设定参数,停止测试
终止时间	放电累计时间达设定参数,停止测试

3.19.0CP 测试功能

负载具有过电流测试功能(OCP),其测量原理是:当输入电压达到开启电压时,延时一段时间,定电流模式开始工作。每隔一段时间,按照步进值增加带载电流,同时监测输入电压,若输入电压高于终止电压,则继续往下运行;若输入电压低于终止电压,则将此前最大带载电流作为测量结果,然后关闭输入,停止测试。RK8530 系列负载提供了 OCP 电流判定功能,可对测量结果进行范围判断,并报出 PASS 或 FAIL。

操作步骤

1. 按 Shift + 8 (Test) 键,进入 Test 功能选择界面;

2. 转动旋钮,选择"OCP",按 Enter 键使能 OCP 测试功能,屏幕显示 OCP 测试界面;

图 3-21 OCP 测试功能

- 3. 设置 OCP 测试参数;
- 4. 按 ON 键开始 OCP 测试;
- 5. 回显区域 "OCP 12.5A"项目为测试结果,过流点电流值。PASS 表示电流结果在检查范围内,FAIL 表示电流结果超出检查范围。ERROR 表示测试错误,即达到最大带载电流时被测电源的电压依然高于终止电压。

æ	业1.	12	50
좂	<u>Z</u> XT	17.	AFI.
- 1	x		

参数名称	参数说明
开启电压	OCP 测试开启电压
延时时间	输入电压达到开启电压后延时带载时间,范围: 0.0~ 60.0秒
起始电流	OCP 测试起始带载电流
步进电流	每步递增电流值
单步时间	每步运行时间,范围: 0.01~3600.0秒
终止电流	允许带载的最大电流值
终止电压	输入电压低于终止电压即停止测试
判断上限	电流结果的判断上限
判断下限	电流结果的判断下限

注意:若达到终止电流后输入电压依然高于终止电压,停止测试,屏幕显示ERROR。

3.20. OPP 测试功能

负载具有过功率测试功能 (OPP), 其测量原理是: 当输入电压达到开启电压时, 延时一段时间, 定功率模式开始工作。每隔一段时间, 按照步进值增加带载功率, 同时监测输入电压, 若输入电压高于终止电压, 则继续往下运行; 若输入电压低于终止电压, 则将此前最大带载功率作为测量结果, 然后关闭输入, 停止测试。RK8530 系列负载提供了 OPP 功率判定功能, 可对测量结果进行范围判断, 并报出 PASS 或 FAIL。

操作步骤

- 1. 按 Shift + 8 (Test) 键,进入 Test 功能选择界面;
- 2. 转动旋钮,选择"OPP",按 Enter 键使能 OPP 测试功能,屏幕显示 OPP 测试界面;

图 3-22 OPP 测试功能

- 3. 设置 OPP 测试参数;
- 4. 按 ON 键开始 OPP 测试;
- 5. 回显区域"OPP 12.5W"显示项目为测试结果,过功率点功率值。PASS 表示功率 结果在检查范围内,FAIL 表示功率结果超出检查范围,ERROR 表示测试错误,即达 到最大带载功率时被测电源的电压依然高于终止电压。

参数说明

参数名称	参数说明
开启电压	OPP 测试开启电压
延时时间	输入电压达到开启电压后延时时间,范围:0.00~60.0秒。
起始功率	起始带载功率
步进功率	每步递增功率值
单步时间	每步运行时间,范围: 0.01~3600.0秒
终止功率	允许带载的最大功率值
终止电压	输入电压低于终止电压即停止测试
判断上限	功率结果的判断上限
判断下限	功率结果的判断下限

注意:若达到终止功率后输入电压依然高于终止电压,停止测试,屏幕显示ERROR。

3.21. 电池内阻测试功能

负载采用直流放电法测量电池内阻。根据欧姆定律 R=U/I,负载使电池在短时间内通过 两个恒定电流,同时测量电池两端的电压差,计算 R=(U1-U2)/(I2-I1)得到电池内阻。

RK8530 采用4线制测量电池内阻。用户不仅要连接输入电流线缆,还需连接远端电压 采样线缆,如下图所示。

图 3-23 电池内阻测试接线示意

负载提供了测试结果判定功能,可检查内阻结果是否在指定的上下限之间,然后报出 "PASS"或 "FAIL"。

操作步骤

- 1. 按 Shift + 8 (Test) 键,进入 Test 功能选择界面;
- 2. 转动旋钮,选择"DC_R",按 Enter 键使能电池内阻测试功能,屏幕显示电池内阻测试界面;

图 3-24 电池内阻测试功能

- 3. 设置电池内阻测试参数;
- 4. 按 ON 键开始电池内阻测试;
- 回显区域 "Rdc 12.5mΩ"显示项目为测试结果, 电池内阻值。PASS 表示内阻结 果在判断上限与判断下限之间, 而 FAIL 表示测试结果超出判断上限或判断下限。
 若判断上限或判断下限设为 0, 表示不再进行检查, 直接提示 PASS。

参数说明

参数名称	参数说明
电流-1	测试电流1
脉宽-1	测试电流1持续带载时间,范围是1~60.0秒

电流-2	测试电流 2
脉宽-2	测试电流2持续带载时间,范围是1~60.0秒
判断上限	内阻结果的判断上限,范围 0.000~99999mΩ
判断下限	内阻结果的判断下限,范围 0.000~99999mΩ

注意:若远端采样线缆或电流线缆未良好接触,测试时会产生错误,屏幕显示ERROR。

3.22. 负载效应测试功能

负载效应测试功能主要用于测试电源的负载调整率。其实现原理是:负载分别以低、中、 高3档电流进行恒电流带载,每档电流持续一段时间,然后测量输入电压。最后按照下面的 公式计算电压变化△V、负载调整率 Regulation 及电源内阻 Rs。

 $\Delta V = V_{I_MIN} - V_{I_MAX}$ Regulation = $\Delta V \div V_{I_Normal}$ R_s = $\Delta V \div (I_MAX - I_MIN)$

操作步骤

- 1. 按 Shift + 8 (Test) 键,进入 Test 功能选择界面;
- 2. 转动旋钮,选择"LOEF",按 Enter 键使能负载效应测试功能,屏幕显示负载效应测试界面;

图 3-25负载效应测试功能

- 3. 设置负载效应测试参数;
- 4. 按 ON 键开始负载效应测试 ;
- 5. 回显区域"Vf: 0.000V"显示项目为测量得到的电压差值。"Ra: 0.000%"显示项 目为测试结果,负载调整率。"Rs: 0.000mΩ"显示项目为被测电源内阻值。
参数说明

参数名称	参数说明
低位电流	最低档测试电流
高位电流	最高档测试电流
正常电流	中间档测试电流
持续时间	每档电流持续带载时间,范围是0.1~60.0秒

注意:使用负载效应测试功能时,建议设置为远端采样方式。

3.23. LED 模拟测试功能

LED 模拟测试功能,主要用于 LED 电源测试。电子负载通过控制,实现模拟真实 LED 带载的电压电流波形。用户在使用 LED 测试功能前,需要了解 LED 的工作特性:

 加在 LED 两端的电压大于一定值, LED 才会导通。根据此特性可以得到 LED 的等效 电路,以及多个 LED 实际工作等效电路。

一个 LED 等效为一个内阻 Rd 串连一个 恒压源 Vf 故加在一个 LED 两端的电压 需要大于 Vf, LED 才会发光。

图 3-26 LED 等效电路

图 3-27多个LED 串联等效电路

 LED 两端的电压 V_{led}和电流 I_{led} 呈曲线关系, 简称 LED 的 VI 曲线。以下为某品牌 LED 的 VI 曲线图。

通过其 VI 特性曲线, 能了解此 LED 的工作电压范围为 2.7V~3.1V。故其导通电压 V_f= 2.7V, 工作电流范围为 10mA ~75mA 。电流越大, led亮度越高。假定 LED 在电流为 I_{led} = 55mA 的亮度工作。通过 VI 曲线图的对应关系可以得到此状态下 LED 两端的电压 V_{led1}= 3V。 此状态下的等效内阻可以通过以下关系式计算出 R_d = $(V_{led1}-V_f) / I_{led}$ = 5.455Q。故通过 VI 曲线可以得到全部 LED 等效参数。但在实际应用中, 都是多个 LED 串连。用户不需要 知道 LED 的个数, 为了简化设置参数, 将内阻 R_d 和 V_{led1}/ I_{ed} (理解为回路中全部等效电阻 R_a)的比值定义为 "内阻系数"。实际应用中, 多个 LED 串联回路中的"内阻系数"与单个 LED 的内阻系数相等。因此可通过 LED 的 VI 曲线计算出 "LED 内阻系数", 测试出 LED 工作电压 "V_{ledn}"和 LED 的工作电流" I_{led} " 这三项参数。不需要设置 LED 导通电压"V_f" 和 "led的串联个数"这两个参数。

在使用 LED 模拟测试功能时,用户可以通过以下方法得到"I led","V ledn","LED 内阻系数"这三个的设置参数值。

I_{led} = LED 电源的额定工作电流值
 V_{ledn} = LED 电源正常工作时正负端的电压值
 通过 LED 的 VI 曲线计算内阻系数:

内阻系数 =
$$\frac{R_d}{R_{all}}$$
 = $\frac{\frac{V_{led1} - V_f}{I_{led}}}{\frac{V_{led1}}{I_{led}}}$ = $\frac{V_{led1} - V_f}{V_{led1}}$

操作步骤

- 1. 按 Shift + 8 (Test) 键,进入 Test 功能选择界面;
- 2. 转动旋钮,选择"LED",按 Enter 键使能 LED 测试功能,屏幕显示 LED 测试界面;

图 3-29 LED 模拟测试功能

3. 设置 LED 测试参数;

4. 按 ON 键开始 LED 测试。

参数说明

参数名称	参数说明
LED 电压	顺向工作电压
LED 电流	顺向工作电流
内阻系数	Rd 系数,范围是 0.01~1.00

3.24. 动态扫频测试功能

动态扫频功能的最高频率可达 30kHz。测试时负载不断调整动态电流频率,捕获记录 被测电源在整个过程中的峰值电压 V_{p+}、谷值电压 V_{p-},及捕获频率点。扫频功能可有效测 试各类电源在不同频率下的动态响应。

操作步骤

- 1. 按 Shift + 8 (Test) 键, 进入 Test 功能选择界面;
- 2. 转动旋钮,选择"Sweep",按 Enter 键使能动态扫频功能,屏幕显示 Sweep 测试界 面;

图 3-30 动态扫频测试功能

- 3. 设置 Sweep 测试参数;
- 4. 按 ON 键开始 Sweep 测试;
- 5. 回显区域显示测试结果电压谷值 Vp-, 电压峰值 Vp+及其对应频率点;

A	41	NN2	710
杰	杰尔	1.9	HFL
- 1	ᇖ	<i>n</i> u	24

参数名称	参数说明
电流-1	主值电流
电流-2	瞬值电流
上升斜率	电流上升斜率
下降斜率	电流下降斜率
占空比	占空比
起始频率	动态扫频起始频率
终止频率	动态扫频结束频率
步进频率	动态频率递增值
持续时间	每个频率点维持时间,范围0.001~99.999s

3.25. Wave 波形输出功能

Wave 波形输出功能,模拟正玄波电流拉载,最大频率为10kHz。

操作步骤

- 1. 按 Shift + 8 (Test) 键,进入 Test 功能选择界面;
- 2. 转动旋钮,选择"Wave",按 Enter 键进入波形输出功能,屏幕显示相应操作界面;

图 3-32 波形输出功能界面

- 3. 设置参数;
- 4. 按 ON 键开始波形输出功能测试。

参数说明

参数名称	参数说明
波形峰值	正玄波电流峰值
波形谷值	正玄波电流谷值
波形频率	正玄波频率

3.26. 复合操作模式

RK8530 系列负载有 3 种复合操作模式: CV+CC、CR+CC、CP+CC。复合操作模式是在 CV/CR/CP 定态模式下增加 CC 限流值设定,可帮助工程师有效解决测试过程中瞬时电流过 大的问题,避免被测物触发保护甚至损坏的情况。 其中 CV+CC 模式可应用于模拟电池充电特性,测试充电桩以及车载充电器等类似产品。 CR+CC 模式可应用于车载充电机电压限制和电流限制精度测试。CP+CC 模式常用于测试 UPS 电池测试,模拟当电池电压衰减时电流的变化。同样可作为 DC-DC 转换器和逆变器的输入 端的特性模拟。

操作步骤

- 5. 按 Shift + 8 (Test) 键,进入 Test 功能选择界面;
- 6. 转动旋钮,选择复合操作模式如"CV+CC","CR+CC","CP+CC",按 Enter键进入相 应复合操作模式功能,屏幕显示相应操作界面;

图 3-34 复合操作模式功能界面

- 7. 设置复合操作模式参数;
- 8. 按 ON 键开始复合操作测试。

3.27. 并机

RK8530 支持同型号的负载并联,最多可以并联10 台机器,并机功率最大可达30kW。并机后,用户只需像操作单台负载一样操作主机即可。下图以 2U 机型为例,展示了 3 台 负载的并联接线。

图 3-35 并机接线

操作步骤

- 1. 将3台负载全部关机,以确保接线安全;
- 使用标准RS485通讯双绞线连接SYSTEM BUS端子,将3台机子的POA/POB/GND全部相连, 在双绞线最后一个从机终端连接1个120Ω的电阻;
- 3. 使用并机模拟线连接 ANALOG 端子 (并机模拟线需单独购买);
- 4. 使用较粗的电线连接负载与被测设备;
- 5. 按上图接线完成后,负载开机,按Shift+9(Menu)键,进入菜单设置,选择"设置" →"并机",按Enter键进入并机参数设置界面,将其中2台分别设为从机Slave1和 Slave2并将主从控制设置为0n,剩余1台设为主机Master并将主从控制设置为0n;
- 6. 设置从机数目设置为3,按Esc退出设置页面;
- 7. 主机设置为CCH模式,按下On键打开带载,像操作单台负载一样操作主机即可;
- 8. 不使用并机功能时,请确保将主从设定为主机Master且将主从控制设置为off, 否则有些模式功能无法正常使用;

设置 勇	系统	编辑	关于	
应用设定	È	主从设	定	Master
自动设定	2	从机数	目	1
时间测量		主从控	制	Off
并机				
限制设定	2			
保护设定	È			

图 3-36 并机设置界面

 设置"主从设定"为 Slave1 (同样的方法将另一台从机设为 Slave2),至此从机设 置结束,按 Esc 键回到主界面;

- 10. 接下来设置主机,设置"主从设定"为 Master;
- 11. 设置"从机数目"为2;
- 12. 设置"主从控制"为开启;
- 13. 至此,并机设置已完成,按 Esc 退回主界面,像操作单台负载一样操作主机即可。

3.28. Ⅴ₀+/Ⅴ₀-捕获

 V_{p+} 和 V_{p-} 捕获功能用于测量带载过程中输入电压的最高值与最低值。其原理是:从输入 On 开始,到输入Off结束,在这一段时间内,负载持续检测输入电压,找到电压最高点记 为 V_{p+} ,找到电压最低点记为 V_{p-} 。该功能用于测试电源在负载电流变化的过程中电压的波 动幅值。

图 3-37Vp+和Vp-捕获示意

操作步骤

1. 在主界面,按 Shift + → 键多次,切换回显内容为 V_{p+}/V_{p-} 显示界面;

图 3-38 V p+/Vp-捕获功能测试结果显示界面

- 2. 按 ON 键开始带载,同时也开始测量;
- 3. 按 ON 键停止带载,同时也停止测量。

3.29. 时间测量

时间测量功能用于测量起始信号点到结束信号点之间的时间。测量信号可选外部输入 电压、外部输入电流、外部电平信号。还可以选择测量信号的方向为上升或下降。

时间测量的原理是:从发起时间测量开始,负载持续检测输入信号。当信号满足方向 与触发阀值2个条件时,记录此时刻的时间。结束点的时刻与起始点的时刻差即为时间测 量结果。时间测量范围是 0.1 m s~20h, 分辨率为 0.1 ms。

时间测量功能可用于电源模块的开机时间测量、关机时间测量、保持时间测量、上升 沿与下降沿测量,以及保险丝熔断时间,断路器响应时间测量等。

图 3-39 时间测量功能

操作步骤

- 1. 按 Shift + 9 (Menu) 键, 进入菜单设置界面;
- 2. 选择"设置"->"时间测量",按 Enter 键进入时间测量设置界面;

设置 系统	编辑 关于	<u>-</u>		
应用设定	起始信号	Volt		
自动设定	起始方向	Rise		
时间测量	起始主值	000. 000	V	
并机	结束信号	Volt		
限制设定	结束方向	Rise		
保护设定	起始主值	000. 000	V	

图 3-40时间测量功能参数设置界面

- 3. 起始信号和结束信号可选为 Volt (电压)、Curr (电流)、Ext (外部电平);
- 4. 信号方向可选 Rise (上升) 或 Fall(下降);
- 5. 设置起始主值和结束主值,主值表示信号触发阀值;
- 6. 设置完成后按 Esc 退回到主界面;
- 7. 以定态 CCH 功能举例 (其它功能下也是一样的操作方法), 按 Shift+→ 键

多次,切换到时间测量显示画面;

图 3-41 时间测量功能界面

- 8. 按 Trigger 开启一次时间测量;
- 负载检测到完整的起始信号与结束信号后,本次时间测量结束,屏幕提示"SUCCESS", 并显示测量得到的时间,单位是 ms。

注意:开启时间测量与开启输入没有直接关系。

测量外部电平时,不需要设置起始主值或结束主值,只需要选择电平方向即可。外部电 平输入测量端口入下图所示。

图 3-42 测量外部电平时间

3.30. 保存与调用

负载提供了 20 组存储位置供用户保存测试功能参数。可将各个测试功能的配置参数保存至指定的位置,供用户方便快速地调出使用。若使能了快速调用功能,只需按一个数字键便可调出已保存的参数。该功能可显著减少用户操作,提高测试效率。

操作步骤

当用户需要使用保存与调用功能时,应首先配置好测试功能参数,下面以定态功能举例 说明:

- 1. 切换至定态定电流模式,设置电流为10A;
- 2. 按 Shift + 0 (Save) 键, 进入保存界面;
- 3. 输入数字 1, 按 Enter 键使之生效,保存 CC. 10A 参数至存储位置 1;
- 4. 切换至定态定电压模式,设置电压为 30V;
- 5. 按 Shift + 0 (Save) 键,进入保存界面;
- 6. 输入数字 2, 按 Enter 键使之生效, 保存 CV. 30V 参数至存储位置 2;
- 7. 按 Shift + 5 (Recall) 键,进入调用界面;
- 输入数字 1,按 Enter 键使之生效,将调用 1 号位置参数,负载将切换至定态电流 模式,其带载电流为 10A;
- 9. 按 Shift + 5 (Recall) 键,进入调用界面;
- 10. 输入数字 2, 按 Enter 键使之生效,将调用 2 号位置参数,负载将切换至定态电压模式,其带载电压为 30V。

快速调用

- 1. 按 Shift + 9 (Menu) 键,进入菜单设置界面;
- 2. 选择"设置"->"系统"->"其他设定",按 Enter 键进入系统参数设置界面;
- 3. 将"快速调用"选项设为开启,即使能快速调用;
- 4. 按 Esc 键, 回到主界面;
- 在主界面上(系统菜单其它设定中快速调用设置为开启,非编辑参数状态),按数字
 键便可调出0~19位置的参数,其中按键
 20~9

3.31. 掉电保存

RK8530 系列电子负载提供掉电保存功能。掉电保存使能后,负载将在上电时恢复上次关机时的参数;否则,负载将初始化为默认参数。

1. 按 Shift + 9 (Menu) 键, 进入菜单设置界面;

2. 选择"设置"->"系统"->"其他设定",按 Enter 键进入系统参数设置界面;

3. 将"掉电保存"选项设为开启,即使能掉电保存功能。

当掉电保存使能后,用户还可启用上电自动打开输入功能。此特性用于负载开机后立即 开始测试的场合。

1. 按 Shift + 9 (Menu) 键, 进入菜单设置界面;

2. 选择"设置"->"应用设定",按 Enter 键进入应用参数设置界面;

3. 将"上电带载"选项设为开启,使能该功能。

注意: 若掉电保存未使能, 即使开启了上电带载, 也不会生效。

3.32. 外部控制信号

外部控制信号接线示意图如下。

图 3-43 外部控制信号接线

RK8530 系列负载具有外部控制信号端口。该端口接收 TTL 电平信号,低电平有效,其 滤波时间约为 20ms。外部控制信号有 4 种用法:

- Trigger: 默认作为触发信号使用。输入端口检测到有效的低电平脉冲,即收到一次触发信号。在动态脉冲模式和动态翻转模式下,触发信号可切换带载电流;在自动测试功能下,触发信号可使运行步骤切换至下一步;
- Toggle: 作为输入开关控制信号。输入端口检测到有效的低电平脉冲,即切换输入
 开关一次,具有与按 ON 键相同的效果:
- Hold: 作为输入开关控制信号。输入端口检测到有效的低电平,即开启负载输入, 检测到有效的高电平,则关闭负载输入。
- Halt: 作为输入保护信号。输入端口检测到有效的低电平时,负载可正常拉载,检测到有效的高电平,则负载发生保护关闭输入,按 Shift + 6 (PROT_CLR) 键可 清除保护内容。

操作步骤

- 1. 按 Shift + 9 (Menu) 键, 进入菜单设置界面;
- 2. 选择"设置"->"应用设定",按 Enter 键进入应用参数设置界面;
- 3. 选择"外部控制"进行设置,可选 Trigger、Toggle、Hold 或 Halt;
- 4. 按Enter 键确认输入信号行为。

3.33. 输出信号

RK8530 系列负载具有 OUT 输出信号端口。该端口输出 TTL 电平信号,其功能如下:在 自动测试功能下,当测试结果为 PASS,输出低电平,否则输出高电平。

第四章 自动测试教程

自动测试功能广泛应用于品质检测。自动测试功能的原理是:负载按照自动文件,顺序 执行测试步骤,在每步测试中,负载以CC、CV、CR、CP 定态模式中的1种,带载一段时间, 然后检查电压、电流、功率是否在指定的范围内。运行完全部测试步骤后,给出最终结果 PASS 或 FAIL。自动测试功能,可显著提高检测效率。

4.1. 编辑自动测试文件

RK8530 系列负载可存储多达 50 个自动测试文件,每个自动文件最多支持 20 个测试步骤。下面介绍编辑自动测试文件的方法与步骤。

- 1. 按 Shift 9 (Menu) 键,进入菜单设置界面;
- 2. 选择"编辑"->"自动文件",按 ▷键进入自动文件编辑界面;
- 3. 转动旋钮或输入数字,选择待编辑的文件号,按Enter键后转动旋钮机或按数字键 输入文件号,按Enter键确定。

设置	系统	编辑	关于		
序列:	文件	文件	号	01	
自动支	文件	文件	长度	01	
1/2					

图 4-1 自动文件编辑界面

- 4. 转动旋钮或按数字键输入文件长度,按 Enter 键确认,编辑焦点自动移到下一项"编辑步";
- 5. 输入想要编辑的步骤,按Enter 键确认,编辑焦点自动移到下一项"带载模式";
- 6. 选择带载模式,可选 CC、CV、CR、CP 中的 1 种,按Enter 键确认,编辑焦点自动 移到下一项"单步延时":

- 7. "单步延时"用于控制测试步骤的运行时间,范围是 0.1~25.5s。若设为 25.5,则该步的实际运行不受"单步延时"的约束,而是由触发信号决定:收到触发信号后,切换至下一步。设置好单步延时参数,按Enter 键确认,编辑焦点自动移到下一项设置"电流设定"(注:如第6步带载模式选 CV,则下一项为"电压设定",如带载模式选 CR,则下一项为"电阻设定",如带载模式选 CP,则下一项为"功率设定");
- 设置电流(或电压、或阻值、或功率),按 Enter 键确认,编辑焦点自动移到下一 项"短路使能";
- "短路使能"用于控制当前步骤是否模拟短路操作,若选择为开启,则会在设定的 带载模式下进行模拟短路操作。若选择为关闭,则按照设定的带载数值进行带载。

按Enter 键确认,编辑焦点自动移到下一项"检查内容";

- "检查内容"用于指定测试步骤检查哪项输入参数,可选 Off、Voltage、Current、
 Power 中的 1 项。选为 Off 表示测试步骤不进行规格检查,该步的结果为 Pass。按
 Enter 键确认,编辑焦点自动移到下一项"判断上限";
- 11. "判断上限"指定了判断范围的上限,设置完成,按Enter 键确认,编辑焦点自动 移到下一项"判断下限";
- 12. "判断下限"指定了判断范围的下限,设置完成,按Enter 键确认,编辑焦点自动 移到下一项"编辑步",且自动将编辑步数值加1;
- 13. 重复进行 6~12 步, 直到整个自动文件编辑完成;
- 14. 按 Shift + 0 (Save) 键,保存刚才编辑好的自动文件。

注意: 输入开启时不允许编辑自动文件。

4.2. 运行自动测试文件

- 1. 按 Shift + 8 (Test) 键, 进入 Test 功能选择界面;
- 2. 转动旋钮,选择"Auto",按 Enter 键进入自动测试功能界面;

图 4-2 自动测试功能

- 3. 设置自动测试"文件号",按 Enter 键确认;
- 4. 按 ON 键开始测试;
- 回显区域"Step: 0"显示项目为自动文件当前运行步骤。PASS表示所有步骤均 通过检测, FAIL表示有1步或1步以上检测未通过。

4.3. 自启动

自启动主要用在产品生产线测试,可减少工人对负载的操作,提高测试速度与测试效率。 其实现原理为:负载监测输入端口电压变化,智能分析操作者的动作意图(被测电源是否连 接到负载,测试完成后被测电源是否与负载断开),自动开始测试,无需操作键盘。

参数说明

参数名称	参数说明
断开电压	如输入电压低于"断开电压",便认为被测电源取下
接入电压	如输入电压高于"接入电压",便认为被测电源接上

注意:编辑自动文件最后一步时,请避免设置很大的载荷或使能短路,否则可能会引起输入电压降低,导致测试循环进行。

操作步骤

- 1. 按 Shift + 9 (Menu) 键,进入菜单设置界面;
- 2. 选择"设置"->"应用设定",按 Enter 键进入应用参数设置界面;
- 3. 选择"接入电压"或"断开电压"进行设置;

第五章 通讯介绍

RK8530 系列负载为用户提供了多种通信接口。LAN、RS485、USB(串口)为标配, CAN 为选配。通讯协议支持 SCPI 和 Modbus。用户可以根据需要选择通讯接口和通讯协议进行操作。

5.1. 通讯配置

- 1. 按 Shift + 9 (Menu) 键, 进入菜单设置界面;
- 2. 选择"设置"->"系统"->"通讯设定",按 Enter 键进入系统参数设置界面;

设置 系统	编辑 关于	
通讯设定	I P地址	192. 168. 001. 002
出厂设定	子网掩码	255. 255. 255. 000
其它设定	串口速率	115200
	校验方式	无校验
	设备地址	000
	通信协议	Modbus Rtu

图 5-1 通讯参数设置界面

- "IP地址" 默认为 192. 168. 001. 002 , "子网掩码" 默认为 255. 255. 255. 000。PC 的
 IP地址需要与负载 IP地址在同一个网段, 否则网络无法正常通讯;
- "串口速率"默认为 115200,还可选择 9600、19200、38400、115200 波特率。"校 验方式"支持无校验、奇校验和偶校验,默认为"无校验";
- "设备地址"为 Modbus 协议帧中的地址位域,范围 0~254, 默认为 000;另外在 使用 CAN 通讯时,其地址为"设备地址"的低7位;
- 6. 通讯协议可选 Modbus 和 SCP1;
- 7. 更改通讯配置后,请重启设备负载。

5.2. 接口定义

5.2.1. RS485 与 CAN

图 5-2 RS485 串口与 CAN ロ

表格 5-2 RS485 与 CAN 信号定义

序号	定义	功能
1	485A	485 通讯 A 端口
2	485B	485 通讯 B 端口
3	GND	地
4	CANH	CAN通讯H端口
5	CANL	CAN通讯L端口

5.2.2. USB (串口)

图 5-3 USB 串口

表格 5-2 USB 信号定义

序号	定义	功能
1	VCC	电源
2	GND	地
3	D-	数据负
5	D+	数据正

第六章 SCPI上位机通讯

一、查询指令

1、*IDN?查询仪器信息

- 例子:查询语法*IDN?<CR><LF>
 - 返回: REK, RK8530A, 0, V 2.1. 0. 20240311

注:

REK-制造商 RK8530A - 产品型号

0-预留

V21.0.20240311 - 软件版本号

2、FETCh? 查询当前电压、电流及功率值

例子:查询语法:FETCh?<CR><LF>

返回: 32. 186, 2. 582, 83. 104 注: 32. 186 - 当前电压值, Float 类型, 单位 V 2. 582 - 当前电流值, Float 类型, 单位 A

83.104-当前功率值, Float 类型, 单位 ₩

3、FETCh: VOLTage? 查询当前电压值

- 例子:查询语法:FETCh:VOLTage?<CR><LF> 返回:32.186 注:32.186 - 当前电压值,Float 类型,单位V
- 4、FETCh: CURRent? 查询前电流值
- 例子:查询语法:FETCh:CURRent?<CR><LF>
 - 返回:2.582

注:

- 2.582 当前电流值, Float 类型, 单位 A
- 5、FETCh: POWer?查谐前功率值
- 例子:查询语法:FETCh:POWer? <CR><LF>
 返回:83.104
 注:
 83.104 当前功率值,Float 类型,单位W

- 6、FETCh:RESIstance?查询当前电阻值
- 例子: 查询语法: FETCh:RESIstance? <CR><LF>

返回: 12.466

注:

12.466 - 当前电阻值, Float 类型, 单位Ω

- 7、FETCh: TEMPerature? 查询当前温度值
- 例子: 查询语法: FETCh: TEMPerature? <CR><LF>

返回: 26.5

注:

26.5 - 当前温度值, Float 类型, 单位℃

- 8、FETCh:TIME? 查询当前带载时间
- 例子: 查询语法: FETCh:TIME? <CR><LF>

返回: 1256

注:

1256 - 当前带载时间, Uint32 类型, 单位s

9、FETCh:STATus? 查询当前状态

例子: 查询语法: FETCh: STATus? <CR><LF>

返回: 0

注:

0- 当前状态, Uint32 类型, bti[31:24]- 运行模式, bit[23:20]-带载状态, bit[19:0]- 告警状态;

运行模式: 0-CCH, 1-CCL, 2-CVH, 3-CVL, 4-CRH, 5-CRL, 6-CP, 7-CCDH, 8-CCDL, 9-CRDH, 10-CRDL, 11-CPD, 12-SEQ, 13-AUTO, 14-OCP, 15-OPP, 16-DISC, 17-LOEF, 18-DC_R, 19-LED, 20-SWEEP, 21-WAVE, 22-CV_CC, 23-CR_CC, 24-CP_CC。

带载状态: 0-不带载, 1-带载中, 2-带载暂停

告警状态: bit2:1-过载, bit3:1-过流, bit4:1-过压, bit5:1-欠压, bit6:1-过温, bit7:1-反接, bit8:1-电流未校准, bit9:1-电压未校准, bit10:1-参数加载异常, bit11:1-通讯超时, bit12:1-过压保护, bit13:1-过流保护, bit14:1-过载保护, bit15:1-瞬态电流过大, 其它bit位预留。

二、菜单设置查询指令1

1、CONFigure: VOLTage: SENSe 此命令用于设置和查询仪器电压采样端口

例子: 设置语法: CONFigure: VOLTage: SENSe 1<CR><LF>

注: 1-设置的端口,整数值,0-近端采样,1-远端采样

查询语法:CONFigure:VOLTage:SENSe?<CR><LF> 返回:1

- 2、CONFigure: VOLTage: ON 此命令用于设置和查询设置菜单中的带载电压
- 例子: 设置语法: CONFigure: VOLTage: ON 120.000 <CR><LF>

注: 120.000-设置的带载电压值,Float类型,单位V,最大3位小数,范围0[~]600.000, 为0时表示关闭该功能。

查询语法: CONFigure: VOLTage: ON?<CR><LF>

返回:120

- 3、CONFigure: VOLTage: OFF 此命令用于设置和查询设置菜单中的卸载电压
- 例子: 设置语法: CONFigure: VOLTage: 0 FF 20.000 <CR><LF>
 - 注: 20.000-设置的卸载电压值, Float类型,单位V,最大3位小数,范围0[~]600.000, 为0时表示关闭该功能。
 - 查询语法: CONFigure: VOLTage: OFF?<CR><LF>
 - 返回:20

4、CONFigure:LIMIt:VOLTage:UPPer 此命令用于设置和查询设置菜单中的定态模式下电压操作上限

- 例子: 设置语法: CONFigure:LIMIt:VOLTage:UPPer120.000 <CR><LF>
 - 注: 120.000-设置的电压操作上限值,Float类型,单位V,最大3位小数,范围0~600.000,为0时表示关闭该功能。
 - 查询语法: CONFigure:LIMIt:VOLTage:UPPer?<CR><LF>

返回: 120

- 5、CONFigure:LIMIt:VOLTage:LOWer 此命令用于设置和查询设置菜单中的定态模式下电压操作下限
 例子: 设置语法: CONFigure:LIMIt:VOLTage:LOWer20.000 <CR><LF>
 - 注: 20.000-设置的电压操作下限值,Float类型,单位V,最大3位小数,范围0[~]600.000, 为0时表示关闭该功能。
 - 查询语法: CONFigure:LIMIt:VOLTage:LOWer?<CR><LF>
 - 返回:20

6、CONFigure:LIMIt:CURRent:UPPer 此命令用于设置和查询设置菜单中的定态模式下电流操作上限例子: 设置语法: CONFigure:LIMIt:CURRent:UPPerO.000(CR><LF>

注: 10.000-设置的电流操作上限值,Float类型,单位A,最大3位小数,范围0[~]额定电流值,为0时表示关闭该功能。

查询语法: CONFigure:LIMIt:CURRent:UPPer?<CR><LF>

返回:10

- 7、CONFigure:LIMIt:CURRent:LOWer 此命令用于设置和查询设置菜单中的定态模式下电压操作下限例子: 设置语法: CONFigure:LIMIt:CURRent:LOWer1.000(CR><LF>
 - 注: 1.000-设置的电流操作下限值 Float类型,单位A,最大3位小数,范围0~额定电流值,为0时表示关闭该功能。
 - 查询语法: CONFigure:LIMIt:CURRent:LOWer?<CR><LF>

返回:1

8、CONFigure:LIMIt:RESIstance:UPPer 此命令用于设置和查询设置菜单中的定态模式下电阻操作上限
 例子: 设置语法: CONFigure:LIMIt:RESIstance:UPPer100.000 <CR><LF>

- 注: 100.000-设置的电阻操作上限值,Float类型,单位Ω,最大3位小数,范围请参考参数表,为0时表示关闭该功能。
- 查询语法: CONFigure:LIMIt:RESIstance:UPPer ?<CR><LF>

返回:100

- 9、CONFigure:LIMIt:RESIstance:LOWer 此命令用于设置和查询设置菜单中的定态模式下电阻操作下限
 例子: 设置语法: CONFigure:LIMIt:RESIstance:LOWer10.000 <CR><LF>
 - 注: 10.000-设置的电阻操作下限值,Float类型,单位Ω,最大3位小数,范围请参考参数表,为0时表示关闭该功能。
 - 查询语法: CONFigure:LIMIt:RESIstance:LOWer?<CR><LF>
 - 返回:10
- 10、CONFigure:LIMIt:POWer:UPPer 此命令用于设置和查询设置菜单中的定态模式下功率操作上限

例子: 设置语法: CONFigure:LIMIt:POWer:UPPer100.000 <CR><LF>

- 注: 100.000-设置的功率操作上限值,Float类型,单位W,最大3位小数,范围0~额定功率值,为0时表示关闭该功能。
- 查询语法: CONFigure:LIMIt:POWer:UPPer?<CR><LF>

返回:100

11、CONFigure:LIMIt:POWer:LOWer 此命令用于设置和查询设置菜单中的定态模式下功率操作下限

例子: 设置语法: CONFigure:LIMIt:POWer:LOWer10.000 <CR><LF>

注: 10.000-设置的功率操作下限值,Float类型,单位W,最大3位小数,范围0~额定功率值,为0时表示关闭该功能。

查询语法: CONFigure:LIMIt:POWer:LOWer?<CR><LF> 返回: 10

12、CONFigure: OVP 此命令用于设置和查询设置菜单中的软件过压保护值

例子: 设置语法: CONFigure: 0VP120.000 <CR><LF>

注: 120.000-设置的过压保护值,Float类型,单位V,最大3位小数,范围0[~]600.000, 为0时表示关闭该功能。

查询语法: CONFigure: OVP ?<CR><LF>

返回: 120

13、CONFigure: OCP 此命令用于设置和查询设置菜单中的软件过流保护值

例子: 设置语法: CONFigure:0CP 10.000 <CR><LF>

注: 10.000-设置的过流保护值 Float类型,单位A,最大3位小数,范围 0~额定电流,为0时表示关闭该功能。

查询语法: CONFigure:OCP?<CR><LF>

返回:10

14、CONFigure: OPP 此命令用于设置和查询设置菜单中的软件过载保护值

例子: 设置语法: CONFigure: OPP 1000.000 <CR><LF>

注: 1000.000-设置的过载保护值,Float类型,单位W,最大3位小数,范围0~额定功率,为0时表示关闭该功能。

查询语法: CONFigure: OPP?<CR><LF>

返回: 1000

15、CONFigure:LVP 此命令用于设置和查询设置菜单中的软件欠压保护值

例子: 设置语法: CONFigure: LVP 20.000 <CR><LF>

注: 20.000-设置的欠压保护值,Float类型,单位V,最大3位小数,范围0[~]600.000, 为0时表示关闭该功能。

查询语法: CONFigure:LVP?<CR><LF> 返回: 20

16、CONFigure:LIMIt:CURRent 此命令用于设置和查询设置菜单中的电流限制值

例子: 设置语法: CONFigure:LIMIt:CURRent 10.000 <CR><LF>

注: 10.000-设置的电流限制值, Float类型,单位A,最大3位小数,范围 0~110% 额定电流,为0时表示关闭该功能。

查询语法: CONFigure:LIMIt:CURRent?<CR><LF>

返回:10

- 17、CONFigure:LOAD:TIME 此命令用于设置和查询设置菜单中的带载时间
- 例子: 设置语法: CONFigure:LOAD:TIME1000 < CR><LF>

注: 1000 - 设置的带载时间, Uint32类型, 单位s, 范围0~999999, 为0时表示关闭该功能。

查询语法: CONFigure:LOAD:TIME?<CR><LF>

返回: 1000

18、CONFigure:EXTernal:INH 此命令用于设置和查询外部控制信号的控制行为

例子: 设置语法: CONFigure:EXTernal:INHO<CR><LF>

注: 0-设置的外部控制信号行为:0-Trigger(触发),1-Toggle(开关翻转),2-Hold(开关保存), 3-Halt(保护信号,外部控制无效)。

查询语法: CONFigure:EXTernal:INH?<CR><LF>

返回:0

三、模式运行设置查询指令2

1、INPut:MODE 此命令用于设置和查询设备运行功能模式

例子: 设置语法: INPut:MODE1<CR><LF>

- 注: 1 设置的功能模式,整数值,0-CCH,1-CCL,2-CVH,3-CVL,4-CRH,5-CRL,6-CP,7-CCDH,8-CCDL,9-CRDH, 10-CRDL,11-CPD,12-SEQ,13-AUTO,14-OCP,15-OPP,16-DISC,17-LOEF,18-DC_R,19-LED,20-SWEEP, 21-WAVE,22-CV_CC,23-CR_CC,24-CP_CC
 - 查询语法: INPut:MODE ?<CR><LF>

返回:1

2、INPut:ON_Off 此命令用于设置带载和查询设备带载状态

例子: 设置语法: INPut:ON_Off1<CR><LF>

注: 1-设置带载/不带载,整数值,0/1-带载状态下关闭带载,非带载状态下启动带载(功能同 ON 按键) 查询语法: INPut:ON_Off ?<CR><LF>

返回:1

注:查询指令返回当前带载状态值:0-不带载,1-带载中,2-带载暂停

- 3、INPut:TRIGger 此命令用于设置触发和查询设备触发状态
- 例子: 设置语法: INPut:TRIGger1<CR><LF>

注: 1 - 设置触发,整数值,1-非触发状态下触发一次(功能同 Trigger 按键)

查询语法: INPut:TRIGger ?<CR><LF>

返回:0

注:查询指令返回当前触发状态值:0-非触发状态,1-触发中

- 4、INPut:SHORt 此命令用于设置短路测试和查询设备短路测试状态
- 例子: 设置语法: INPut:SHORt1<CR><LF>
 - 注: 1-设置短路,整数值,菜单中设置短路按键行为为Toggle时: 0/1-非短路测试状态下 开启短路测试,短路测试状态下关闭短路测试;菜单中设置短路按键行为为Hold时: 0-短 路测试状态下关闭短路测试, 1-非短路测试状态下开启短路测试
 - 查询语法: INPut:SHORt?<CR><LF>
 - 返回:0

注:查询指令返回当前短路测试状态值:0-未开启短路测试,1-短路测试中

- 5、INPut:LOCK 此命令用于设置页面锁定和查询设备页面锁定状态
- 例子: 设置语法: INPut:LOCK 1<CR><LF>
 - 注: 1-设置页面锁定状态,整数值,0-页面解锁,1-页面锁定。
 - 查询语法: INPut:LOCK?<CR><LF>

返回:1

四、定态模式设置查询参数指令3

- 1、:CCH:CURRent 此命令用于设置和查询CCH 模式运行电流
- 例子: 设置语法: :CCH:CURRent2.358 <CR><LF>

注: 2.358 - 设置的电流值, Float 类型, 单位A, 范围0[~]额定电流, 最大3位小数有效值。 查询语法: :CCH:CURRent?<CR><LF>

返回: 2.358

- 2、:CCH:CURRent:RISE 此命令用于设置和查询CCH 模式运行电流的上升斜率
- 例子: 设置语法: :CCH:CURRent:RISE0.358 <CR><LF>

注: 0.358-设置的电流上升斜率值,Float 类型,单位A/us (ms),范围0.001~2.000,最大3位小数有效值。 58

查询语法: :CCH:CURRent:RISE?<CR><LF>

返回: 0.358

- 3、:CCH: CURRent: FALL 此命令用于设置和查询 CCH 模式运行电流的下降斜率
- 例子: 设置语法: :CCH:CURRent:FALLO.358 <CR><LF>
 - 注: 0.358-设置的电流下降斜率值, Float 类型, 单位A/us (ms), 范围0.001~2.000, 最大3位小数有效值。 查询语法: :CCH:CURRent:FALL?<CR><LF>

返回: 0.358

- 4、:CCL:CURRent 此命令用于设置和查询CCL 模式运行电流
- 例子:设置语法::CCL:CURRent 2.358 <CR><LF>
 注: 2.358 设置的电流值,Float 类型,单位A,范围0~额定电流,最大3位小数有效值。
 查询语法::CCL:CURRent ?<CR><LF>
 返回: 2.358
- 5、:CCL:CURRent:RISE 此命令用于设置和查询CCL 模式运行电流的上升斜率
- 例子: 设置语法: :CCL:CURRent:RISEO.358<CR><LF>
 - 注: 0.358 设置的电流上升斜率值,Float 类型,单位A/us (ms),范围0.001~0.200,最大3位小数有效值。
 查询语法: :CCL:CURRent:RISE?<CR><LF>
 返回: 0.358
- 6、:CCL:CURRent:FALL 此命令用于设置和查询CCL 模式运行电流的下降斜率
- 例子: 设置语法: :CCL:CURRent:FALLO.358 <CR><LF>
 - 注: 0.358-设置的电流下降斜率值 Float 类型,单位A/us (ms),范围0.001~0.200,最大3位小数有效值。 查询语法: :CCL:CURRent:FALL?<CR><LF> 返回: 0.358
- 7、: CVH: VOLTage 此命令用于设置和查询 CVH 模式运行电压
- 例子: 设置语法: :CVH: VOLTage 32. 358 <CR><LF>
 - 注: 32.358-设置的电压值, Float 类型,单位V,范围0~模式额定电压,最大3位小数有效值。
 - 查询语法: :CVH: VOLTage ?<CR><LF>

返回: 32.358

- 8、:CVH: VOLTage: RISE 此命令用于设置和查询 CVH 模式运行电压的上升斜率
- 例子: 设置语法: :CVH:VOLTage:RISE1.358 <CR><LF>
 - 注: 1.358-设置的电压上升斜率值,Float 类型,单位V/us (ms),范围0.001~100.000,最大3位小数有效值。 查询语法: :CVH:VOLTage:RISE?<CR><LF> 返回: 1.358

9、:CVH: VOLTage: FALL 此命令用于设置和查询 CVH 模式运行电压的下降斜率

- 例子: 设置语法::CVH:VOLTage:FALL1.358(CR><LF>
 - 注: 1.358-设置的电压下降斜率值 Float 类型,单位V/us (ms),范围0.001~100.000,最大3位小数 有效值。
 查询语法: :CVH:VOLTage:FALL?<CR><LF>
 返回: 1.358
- 10、:CVL:VOLTage 此命令用于设置和查询CVL 模式运行电压
- 例子: 设置语法: :CVL: VOLTage 32. 358 <CR><LF>
 - 注: 32.358 设置的电压值, Float 类型,单位V,范围0[~]模式额定电压,最大3位小数有效值。
 查询语法: :CVL:VOLTage ?<CR><LF>
 返回: 32.358
- 11、:CVL:VOLTage:RISE 此命令用于设置和查询CVL 模式运行电压的上升斜率
- 例子: 设置语法::CVL:VOLTage:RISE1.358 <CR><LF>
 - 注: 1.358 设置的电压上升斜率值, Float 类型,单位V/us (ms),范围0.001~20.000,最大 3位小数有效值。
 - 查询语法: :CVL:VOLTage:RISE?<CR><LF>
 - 返回: 1.358
- 12、:CVL:VOLTage:FALL 此命令用于设置和查询CVH 模式运行电压的下降斜率
- 例子: 设置语法: :CVL:VOLTage:FALL1.358 <CR><LF>
 - 注: 1.358 设置的电压下降斜率值,Float 类型,单位V/us (ms),范围0.001~20.000,最大 3位小数有效值。
 - 查询语法: :CVL:VOLTage:FALL?<CR><LF>
 - 返回: 1.358
- 13、:CRH:RESIstance 此命令用于设置和查询CRH 模式运行电阻值
- 例子: 设置语法: :CRH:RESIstance2.358 <CR><LF>
 - 注: 2.358 设置的电阻值, Float 类型, 单位Ω, 范围0[~]模式额定电阻, 最大3位小数有效值。 查询语法: :CRH:RESIstance?<CR><LF> 返回: 2.358
- 14、:CRH:CURRent:RISE 此命令用于设置和查询CRH 模式运行电流的上升斜率
- 例子: 设置语法: :CRH:CURRent:RISE0.358 <CR><LF>
 - 注: 0.358-设置的电流上升斜率值,Float 类型,单位A/us (ms),范围0.001~2.000,最大 3为小数有效值。

查询语法: :CRH:CURRent:RISE?<CR><LF>

返回: 0.358

- 15、:CRH:CURRent:FALL 此命令用于设置和查询CRH 模式运行电流的下降斜率
- 例子: 设置语法: :CRH:CURRent:FALLO.358 <CR><LF>
 - 注: 0.358-设置的电流下降斜率值,Float 类型,单位A/us (ms),范围0.001~2.000,最大 3位小数有效值。

查询语法: :CRH:CURRent:FALL?<CR><LF>

返回: 0.358

- 16、:CRL:RESIstance 此命令用于设置和查询CRL 模式运行电阻值
- 例子: 设置语法: : CRL: RESIstance 2. 358 < CR><LF>
 - 注: 2.358 设置的电阻值, Float 类型,单位Ω,范围0[~]模式额定电阻,最大3位小数有效值。
 查询语法: :ORL:RESIstance?<CR><LF>
 返回: 2.358
- 17、: CRL: CURRent: RISE 此命令用于设置和查询 CRL 模式运行电流的上升斜率
- 例子: 设置语法:: CRL: CURRent: RISEO. 358 <CR><LF>
 注: 0.358 设置的电流上升斜率值, Float 类型, 单位A/us (ms), 范围0.001~0.200, 最大3位小数有效值。

查询语法: : CRL: CURRent: RISE?<CR><LF>

返回: 0.358

- 18、: CRL: CURRent: FALL 此命令用于设置和查询CRL 模式运行电流的下降斜率
- 例子: 设置语法: :CRL:CURRent:FALLO.358 <CR><LF>
 - 注: 0.358-设置的电流下降斜率值,Float 类型,单位A/us (ms),范围0.001~0.200,最大 3位小数有效值。

查询语法: :CRL:CURRent:FALL?<CR><LF>

返回: 0.358

- 19、:CP:POWer 此命令用于设置和查询CP 模式运行功率值
- 例子: 设置语法: : CP: POWer 128. 358 < CR><LF>
 - 注: 128.358-设置的功率值,Float 类型,单位W,范围O[~]模式额定功率,最大3位小数有效值。 查询语法: :CP:POWer?<CR><LF>

返回: 128.358

20、:CP:CURRent:RISE 此命令用于设置和查询CP 模式运行电流的上升斜率

- 例子: 设置语法: :CP:CURRent:RISE0.358 <CR><LF>
 - 注: 0.358-设置的电流上升斜率值,Float 类型,单位A/us (ms),范围0.001~2.000,最大 3位小数有效值。
 查询语法: :CP:CURRent:RISE?<CR><LF>
 返回: 0.358
- 21、: CP: CURRent: FALL 此命令用于设置和查询 CP 模式运行电流的下降斜率
- 例子: 设置语法: :CP:CURRent:FALLO.358 <CR><LF>
 - 注: 0.358-设置的电流下降斜率值 Float 类型,单位A/us (ms),范围0.001~2.000,最大 3位小数有效值。
 - 查询语法: :CP:CURRent:FALL?<CR><LF>

返回: 0.358

五、动态模式设置查询参数指令4

- 1、:CCDH: MODE 此命令用于设置和查询 CCDH 模式运行方式
- 例子:设置语法::CCDH:MODE 0<CR><LF>
 注:0-设置的运行方式,整数,0-连续,1-脉冲,2-翻转,其它值无效。
 查询语法::CCDH:MODE ?<CR><LF>
 返回:0
- 2、:CCDH:CURRent1 此命令用于设置和查询CCDH 模式运行电流值1
- 例子: 设置语法: :CCDH:CURRent10.358 <CR><LF>
 - 注: 0.358 设置的电流值1, Float 类型,单位A,范围0[~]额定电流,最大3位小数有效值。
 查询语法: :CCDH:CURRent1?<CR><LF>
 返回: 0.358
- 3、:CCDH:CURRent2 此命令用于设置和查询CCDH 模式运行电流值2
- 例子: 设置语法: :CCDH:CURRent2 2.358 <CR><LF>
 - 注: 2.358 设置的电流值2, Float 类型,单位A,范围0[~]额定电流,最大3位小数有效值。
 查询语法: :CCDH:CURRent2?<CR><LF>
 返回: 2.358
- 4、:CCDH:TIME1 此命令用于设置和查询CCDH 模式运行脉宽1
- 例子: 设置语法::CCDH:TIME11000.358 <CR><LF>

注: 1000.358-设置的脉宽1, Float 类型,单位ms,范围0.01~60000.00,最大2位小数有效值。 查询语法: :CCDH:TIME1?<CR><LF>

返回: 1000.358

- 5、:CCDH:TIME2 此命令用于设置和查询CCDH 模式运行脉宽2
- 例子: 设置语法::CCDH:TIME 2 2000.358 <CR><LF>
 - 注: 2000.358-设置的脉宽2, Float 类型,单位ms,范围0.01~60000.00,最大2位小数有效值。
 查询语法: :CCDH:TIME 2?<CR><LF>
 返回: 2000.358
- 6、:CCDH:CURRent:RISE 此命令用于设置和查询CCDH 模式运行电流的上升斜率
- 例子: 设置语法: :CCDH:CURRent:RISE0.358 <CR><LF>
 - 注: 0.358-设置的电流上升斜率值,Float类型,单位A/us (ms),范围0.001~2.000,最大3 位小数有效值。
 查询语法: :CCDH:CURRent:RISE?<CR><LF>
 返回: 0.358
- 7、:CCDH: CURRent: FALL 此命令用于设置和查询 CCH 模式运行电流的下降斜率
- 例子: 设置语法: :CCDH:CURRent:FALLO.358 <CR><LF>
 - 注: 0.358-设置的电流下降斜率值, Float 类型, 单位A/us (ms), 范围0.001~2.000, 最大 3位小数有效值。
 - 查询语法: :CCDH:CURRent:FALL?<CR><LF>

返回: 0.358

- 8、:CCDL:MODE 此命令用于设置和查询CCDL 模式运行方式
- 例子: 设置语法::CCDL:MODE O<CR><LF>
 - 注: 0-设置的运行方式,整数, 0-连续, 1-脉冲, 2-翻转, 其它值无效。
 - 查询语法: :CCDL:MODE ?<CR><LF>

返回:0

- 9、:CCDL:CURRent1 此命令用于设置和查询CCDL 模式运行电流值1
- 例子: 设置语法: :CCDL:CURRent10.358 <CR><LF>
 - 注: 0.358-设置的电流值1, Float 类型,单位A,范围0~额定电流,最大3位小数有效值。
 查询语法: :CCDL:CURRent1 ?<CR><LF>
 返回: 0.358

10、:CCDL:CURRent2 此命令用于设置和查询CCDL 模式运行电流值2

- 例子: 设置语法: :CCDL:CURRent 2 2.358 <CR><LF>
 - 注: 2.358 设置的电流值2, Float 类型,单位A,范围0~额定电流,最大3位小数有效值。
 查询语法: :CCDL:CURRent 2?<CR><LF>
 返回: 2.358
- 11、:CCDL:TIME1 此命令用于设置和查询CCDL 模式运行脉宽1
- 例子: 设置语法: :CCDL:TIME1 1000.358 <CR><LF>
 - 注: 1000.358-设置的脉宽1, Float 类型,单位ms,范围0.01[~]60000.00,最大2位小数有效值。
 查询语法: :CCDL:TIME1?<CR><LF>
 返回: 1000.358
- 12、:CCDL:TIME2 此命令用于设置和查询CCDL 模式运行脉宽2
- 例子: 设置语法::CCDL:TIME 2 2000.358 <CR><LF>
 - 注: 2000.358-设置的脉宽2, Float 类型,单位ms,范围0.01[~]60000.00,最大2位小数有效值。
 查询语法: :CCDL:TIME 2?<CR><LF>
 返回: 2000.358
- 13、:CCDL:CURRent:RISE 此命令用于设置和查询CCDL 模式运行电流的上升斜率
- 例子: 设置语法: :CCDL:CURRent:RISE0.358 <CR><LF>
 - 注: 0.358-设置的电流上升斜率值,Float 类型,单位A/us (ms),范围0.001~0.200,最大 3位小数有效值。
 查询语法: :CCDL:CURRent:RISE?<CR><LF>
 - 返回: 0.358
- 14、:CCDL:CURRent:FALL 此命令用于设置和查询CCL 模式运行电流的下降斜率
- 例子: 设置语法: :CCDL:CURRent:FALLO.358 <CR><LF>
 - 注: 0.358-设置的电流下降斜率值,Float类型,单位A/us (ms),范围0.001~0.200,最大 3位小数有效值。
 查询语法: :CCDL:CURRent:FALL?<CR><LF>
 返回: 0.358
- 15、:CRDH: MODE 此命令用于设置和查询 CRDH 模式运行方式
- 例子: 设置语法::CRDH:MODE O<CR><LF>
 - 注: 0-设置的运行方式,整数,0-连续,1-脉冲,2-翻转,其它值无效。
 - 查询语法: :CRDH:MODE ?<CR><LF>

返回:0

16、: CRDH: RESIstance1 此命令用于设置和查询 CRDH 模式运行电阻值1

- 例子: 设置语法::CRDH:RESIstance15.358<CR><LF>
 - 注: 5.358-设置的电阻值1, Float 类型,单位Ω,范围0[~]模式额定电阻,最大3位小数有效值。
 查询语法: :CRDH:RESIstance1?<CR><LF>
 返回: 5.358
- 17、:CRDH:RESIstance2此命令用于设置和查询CRDH模式运行电阻值2
- 例子: 设置语法::CRDH:RESIstance2 12.358 <CR><LF>
 - 注: 12.358-设置的电阻值2, Float 类型,单位Ω,范围0[~]模式额定电阻,最大3位小数有效值。
 查询语法: :CRDH:RESIstance 2?<CR><LF>
 返回: 12.358
- 18、: CRDH: TIME1 此命令用于设置和查询 CRDH 模式运行脉宽1
- 例子: 设置语法::CRDH:TIME11000.358 <CR><LF>
 - 注: 1000.358-设置的脉宽1, Float 类型,单位ms,范围0.01[~]60000.00,最大2位小数有效值。 查询语法: :CRDH:TIME1 ?<CR><LF> 返回: 1000.358
- 19、:CRDH:TIME2 此命令用于设置和查询CRDH 模式运行脉宽2
- 例子: 设置语法: :CRDH:TIME 2 2000.358 <CR><LF>
- 注: 2000.358-设置的脉宽2, Float 类型,单位ms,范围0.01[~]60000.00,最大2位小数有效值。 查询语法: :CRDH:TIME 2?<CR><LF>

返回: 2000.358

- 20、:CRDH:CURRent:RISE 此命令用于设置和查询CRDH 模式运行电流的上升斜率
- 例子: 设置语法: :CRDH:CURRent:RISE0.358 <CR><LF>
 - 注: 0.358-设置的电流上升斜率值,Float类型,单位A/us (ms),范围0.001~2.000,最大 3位小数有效值。
 查询语法: :CRDH:CURRent:RISE?<CR><LF>
 返回: 0.358
- 21、: CRDH: CURRent: FALL 此命令用于设置和查询 CRDH 模式运行电流的下降斜率
- 例子: 设置语法: :CRDH:CURRent:FALLO.358 <CR><LF>
 - 注: 0.358-设置的电流下降斜率值, Float 类型, 单位A/us (ms), 范围0.001~2.000, 最大 3位小数有效值。

查询语法: :CRDH:CURRent:FALL?<CR><LF> 返回: 0.358

- 22、:CRDL:MODE 此命令用于设置和查询CRDL 模式运行方式
- 例子: 设置语法::CRDL:MODE 0<CR><LF>
 注: 0-设置的运行方式,整数,0-连续,1-脉冲,2-翻转,其它值无效。
 查询语法::CRDL:MODE?<CR><LF>
 返回:0
- 23、:CRDL:RESIstance1 此命令用于设置和查询CRDL 模式运行电阻值1
- 例子: 设置语法: :CRDL:RESIstance15.358 <CR><LF>
 - 注: 5.358-设置的电阻值1, Float 类型,单位Ω,范围0[~]模式额定电阻,最大3位小数有效值。
 查询语法: :CRDL:RESIstance1?<CR><LF>
 返回: 5.358
- 24、:CRDL:RESIstance2 此命令用于设置和查询CRDL 模式运行电阻值2
- 例子: 设置语法: : CRDL: RESIstance 2 12. 358 < CR><LF>
 - 注: 12.358-设置的电阻值2, Float 类型,单位Ω,范围0[~]模式额定电阻,最大3位小数有效值。
 查询语法: :CRDL:RESIstance 2?<CR><LF>
 返回: 12.358
- 25、: CRDL: TIME1 此命令用于设置和查询 CRDL 模式运行脉宽1
- 例子: 设置语法:: CRDL: TIME1 1000. 358 <CR><LF>
- 注: 1000.358-设置的脉宽1, Float 类型,单位ms,范围0.01[~]60000.00,最大2位小数有效值。 查询语法: :CRDL:TIME1?<CR><LF> 返回: 1000.358
- 26、:CRDL:TIME2 此命令用于设置和查询CRDL 模式运行脉宽2
- 例子: 设置语法:: : CRDL: TIME2 2000. 358 < CR><LF>
 - 注: 2000.358-设置的脉宽2, Float 类型,单位ms,范围0.01[~]60000.00,最大2位小数有效值。 查询语法: :CRDL:TIME2?<CR><LF> 返回: 2000.358
- 27、: CRDL: CURRent: RISE 此命令用于设置和查询 CRDL 模式运行电流的上升斜率
- 例子: 设置语法: :CRDL:CURRent:RISE0.358 <CR><LF>
 - 注: 0.358-设置的电流上升斜率值, Float类型, 单位A/us (ms), 范围0.001~2.000, 最大 3位小数有效值。

查询语法: :CRDL:CURRent:RISE?<CR><LF>

返回: 0.358

- 28、: CRDL: CURRent: FALL 此命令用于设置和查询 CRDL 模式运行电流的下降斜率
- 例子: 设置语法::CRDL:CURRent:FALLO.358 <CR><LF>
 注: 0.358-设置的电流下降斜率值,Float类型,单位A/us (ms),范围0.001~2.000
 3位小数有效值。
 - 查询语法: :CRDL:CURRent:FALL?<CR><LF>

返回: 0.358

- 29、:CPD:MODE 此命令用于设置和查询CPD 模式运行方式
- 例子: 设置语法:: :CPD:MODE O<CR><LF>
 - 注: 0-设置的运行方式,整数, 0-连续, 1-脉冲, 2-翻转, 其它值无效。

查询语法: :CPD:MODE ?<CR><LF>

返回:0

- 30、: CPD: POWer1 此命令用于设置和查询 CPD 模式运行功率值1
- 例子: 设置语法: : CRDL: POWer 1 50. 358 < CR><LF>
 - 注: 50.358-设置的功率值1, Float 类型,单位W,范围0[~]模式额定功率,最大3位小数有效值。 查询语法: :CPD:POWer?<CR><LF> 返回: 50.358
- 31、:CPD:POWer2 此命令用于设置和查询CPD 模式运行功率值2
- 例子: 设置语法: :CPD:POWer2 120.358 <CR><LF>
 - 注: 120.358-设置的功率值2,Float 类型,单位W,范围0[~]模式额定功率,最大3位小数有效值。 查询语法: :CPD:POWer 2?<CR><LF> 返回: 120.358

32、: CPD: TIME1 此命令用于设置和查询 CRDL 模式运行脉宽1

例子: 设置语法:: : CPD: TIME1 1000. 358 < CR><LF>

注: 1000.358-设置的脉宽1, Float 类型,单位ms,范围0.01[~]60000.00,最大2位小数有效值。 查询语法: :CPD:TIME1?<CR><LF>

返回: 1000.358

33、: CPD: TIME2 此命令用于设置和查询 CRDL 模式运行脉宽2

- 例子: 设置语法:: : CPD: TIME 2 2000. 358 < CR> < LF>
 - 注: 2000.358-设置的脉宽2, Float 类型,单位ms,范围0.01[~]60000.00,最大2位小数有效值。 查询语法: :CPD:TIME 2?<CR><LF> 返回: 2000.358
- 34、:CPD:CURRent:RISE 此命令用于设置和查询CPD 模式运行电流的上升斜率
- 例子: 设置语法: :CPD:CURRent:RISE0.358<CR><LF>
 - 注: 0.358-设置的电流上升斜率值 Float 类型,单位A/us (ms),范围0.001~2.000 最大 3位小数有效值。
 查询语法: :CPD:CURRent:RISE?<CR><LF>
 返回: 0.358
- 35、: CPD: CURRent: FALL 此命令用于设置和查询 CPD 模式运行电流的下降斜率
- 例子: 设置语法: :CPD:CURRent:FALLO.358 <CR><LF>
 - 注: 0.358-设置的电流下降斜率值,Float类型,单位A/us (ms),范围0.001~2.000,最大 3位小数有效值。
 查询语法: :CPD:CURRent:FALL?<CR><LF>
 返回: 0.358

六、序列测试模式设置查询参数指令5

- 1、:SEQ:RUN:FILE 此命令用于设置和查询SEQ 模式运行文件编号
- 例子: 设置语法: :SEQ:RUN:FILE1<CR><LF>

注: 1-设置的序列文件编号,整数,范围1~50,其它值无效。

查询语法: :SEQ:RUN:FILE?<CR><LF>

返回:1

- 2、:SEQ:STATus:RESUIt 此命令用于查询 SEQ 模式运行测试状态
- 例子: 查询语法: :SEQ:STATus:RESUIt?<CR><LF>
 - 返回: 1,6

注:1-当前运行步;

6-当前运行周期。

- 3、:SEQ:EDIT:FILE 此命令用于设置和查询当前 SEQ 编辑文件编号
- 例子: 设置语法: :SEQ:EDIT:FILE1<CR><LF>

注: 1-设置的序列文件编号, 整数, 范围1[~]50, 其它值无效。
 查询语法: :SEQ:EDIT:FILE ?<CR><LF>
 返回: 1
 68

- 4、:SEQ:EDIT:FILE:LENGth 此命令用于设置和查询当前 SEQ 编辑文件长度
- 例子:设置语法::SEQ:EDIT:FILE:LENGth 6<CR><LF>
 注: 6 设置的序列文件长度,整数,范围1[~]20,其它值无效。
 查询语法::SEQ:EDIT:FILE:LENGth?<CR><LF>
 返回:6

5、:SEQ:EDIT:RUNS 此命令用于设置和查询当前 SEQ 编辑文件运行次数

- 例子: 设置语法::SEQ:EDIT:RUNS10<CR><LF>
 - 注: 10 设置的序列文件运行次数, 整数, 范围0[~]60000, 0表示无限循环, 其它值无效。 查询语法: :SEQ:EDIT:RUNS ?<CR><LF> 返回: 10
- 6、:SEQ:EDIT:LINK 此命令用于设置和查询当前 SEQ 编辑文件链接序列
- 例子: 设置语法::SEQ:EDIT:LINK2<CR><LF>

注: 2-设置的链接文件号, 整数, 范围1~50, 其它值无效。

查询语法: :SEQ:EDIT:LINK ?<CR><LF>

返回:2

- 7、:SEQ:EDIT:STEP 此命令用于设置和查询当前 SEQ 编辑文件单步参数
- 例子: 设置语法: :SEQ:EDIT:STEP1 0, 2, 0. 2, 3 <CR><LF>
 - 注: STEP1-1为待设置的步,整数,范围1~20,且该值不能大于文件长度,其它值无效;
 - 0-第一个参数,设置当前设置步的运行模式,0-CCH, 1-CCL, 2-CVH, 3-CVL, 4-CRH, 5-CRL, 6-CP;
 - 2 第二个参数,设置当前设置步的运行值,如CCH模式时为电流值,单位及取值范围同定态CCH模式;
 - 0.2-第三个参数,设置当前设置步的单步斜率,如CCH模式时斜率参数单位及范围同定态CCH模式;

3-第四个参数,设置当前设置步的单步时间,单位s,范围0.0001-99999.0000;

(各参数间通过','间隔)。

查询语法::SEQ:EDIT:STEP 1?<CR><LF>

返回: 0, 2, 0. 2, 3

七、自动测试模式设置查询参数指令6

1、:AUTO:RUN:FILE 此命令用于设置和查询AUTO 模式运行文件编号

例子: 设置语法: :AUTO:RUN:FILE1<CR><LF>

注: 1-设置的自动文件编号,整数,范围1~50,其它值无效。

查询语法: :AUTO:RUN:FILE ?<CR><LF>

返回:1
2、:AUTO:STATus:RESUIt 此命令用于查询AUTO模式运行测试状态结果

- 例子: 查询语法: :AUTO:STATus:RESUIt?<CR><LF>
 - 返回: 6,0,1
 - 注: 6 当前测试步;
 - 0-当前运行各步结果: bit[19:0] 对应第 20 步~第 1 步测试结果, 0-成功, 1-失败;
 - 1 测试结果: 0-测试中, 1-测试成功, 2-测试失败。
- 3、:AUTO:VOLTage:CONNect 此命令用于设置和查询AUTO 模式运行检测的插入电压值
- 例子: 设置语法: :AUTO: VOLTage: CONNect 32. 358 < CR> < LF>
- 注: 32.358 设置的电压值'Float 类型,单位V,范围0[~]模式额定电压,最大3位小数有效值。 查询语法: :AUTO:VOLTage:CONNect ?<CR><LF> 返回: 32.358
- 4、:AUT0:VOLTage:DISConnect 此命令用于设置和查询AUT0 模式运行检测的断开电压值
- 例子: 设置语法: :AUTO:VOLTage:DISConnect 2.358 <CR><LF>
 - 注: 2.358 设置的电压值, Float 类型, 单位V, 范围0[~]模式额定电压, 最大3位小数有效值。
 查询语法: :AUTO:VOLTage:DISConnect ?<CR><LF>
 返回: 2.358
- 5、: AUTO: EDIT: FILE 此命令用于设置和查询当前编辑的 AUTO 文件编号
- 例子: 设置语法: :AUTO:EDIT:FILE1<CR><LF>
 - 注: 1-设置的自动文件编号, 整数, 范围1~50, 其它值无效。
 - 查询语法: :AUTO:EDIT:FILE ?<CR><LF>
 - 返回:1
- 6、:AUTO:EDIT:FILE:LENGth 此命令用于设置和查询当前编辑的 AUTO 文件长度
- 例子: 设置语法: :AUTO:EDIT:FILE:LENGth 10<CR><LF>
 - 注: 10-设置的自动文件长度,整数,范围1~20,其它值无效。
 - 查询语法: :AUTO:EDIT:FILE:LENGth?<CR><LF>
 - 返回:10
- 7、: AUTO: EDIT: STEP 此命令用于设置和查询当前 AUTO 编辑文件单步参数
- 例子: 设置语法::AUTO:EDIT:STEP1 0, 0. 3, 2. 78, 0, 2, 0. 123, 50. 235 < CR><LF>
 注: STEP1 1 为待设置的步, 整数, 范围1[~]20, 且该值不能大于文件长度,其它值无效;

0-第一个参数,设置当前设置步的运行模式,0-CC,1-CV,2-CR,3-CP;

0.3- 第二个参数, 设置当前设置步的单步延时, 单位 s, 取值范围 0.1~25.5, 为 25.5 时由触发信号决定;

2.78- 第三个参数,设置当前设置步的带载值,如CC模式时为电流值,单位及取值范围同定态CCH模式;

- 0-第四个参数,设置当前设置步的短路使能,0-不使能,1-使能,使能后当前步模拟短路测试;
- 2-第五个参数,设置当前设置步的检查内容,0-不检查,1-检查电压,2-检查电流,3-检查功率;
- 0.123 第六个参数,设置当前设置步的检查值上限;
- 50.235 第七个参数,设置当前设置步的检查值下限。
- (各参数间通过','间隔)。
- 查询语法: :AUTO:EDIT:STEP 1?<CR><LF>

返回: 0, 0. 3, 2. 78, 0, 2, 0. 123, 50. 235

八、过流测试模式设置查询参数指令 7

1、:0CP:RESUIt 此命令用于查询 0CP 模式运行测试状态结果

例子: 查询语法: :OCP:RESUIt ?<CR><LF>

返回: 3.525,20.254

注: 3.525 -测试结果过流值, 单位 A;

20.254-测试结果动作时间,单位 ms。

- 2、:0CP:VOLTage:STARtup 此命令用于设置和查询0CP 模式运行开启电压
- 例子: 设置语法: : OCP: VOLTage: STARtup 32. 358 < CR><LF>

注: 32.358-设置的电压值,Float类型,单位V,范围O~模式额定电压,最大3位小数有效值。

查询语法: :OCP:VOLTage:STARtup?<CR><LF>

返回: 32.358

- 3、: 0CP:TIME:STARtup:DELay 此命令用于设置和查询0CP 模式运行启动延时时间
- 例子: 设置语法: :OCP:TIME:STARtup:DELay 1. 2<CR><LF>

注: 1.2-设置的延时时间, Float 类型, 单位s, 范围0~60.0, 最大1位小数有效值。

查询语法: :OCP:TIME:STARtup:DELay ?<CR><LF>

返回: 1.2

- 4、:0CP:CURRent:STARt 此命令用于设置和查询0CP 模式运行的启动电流值
- 例子: 设置语法: :OCP:CURRent:STARt 0.358 <CR><LF>

注: 0.358 - 设置的电流值, Float 类型, 单位A, 范围0~额定电流, 最大3位小数有效值。

查询语法: :OCP:CURRent:STARt?<CR><LF>

返回: 0.358

5、:0CP:CURRent:STEP 此命令用于设置和查询0CP 模式运行的步进电流值

- 例子:设置语法::OCP:CURRent:STEP2.358 <CR><LF>
 注: 2.358-设置的电流值,Float 类型,单位A,范围0~额定电流,最大3位小数有效值。
 查询语法::OCP:CURRent:STEP?<CR><LF>
 返回: 2.358
- 6、:0CP:TIME:STEP 此命令用于设置和查询0CP 模式运行的步进时间
- 例子: 设置语法: :OCP:TIME:STEP1.358 <CR><LF>
 - 注: 1.358 设置的步进时间, Float 类型, 单位s, 范围0.01[~]3600.00, 最大2位小数有效值。 查询语法: :0CP:TIME:STEP?<CR><LF> 返回: 1.358
- 7、:0CP:CURRent:END 此命令用于设置和查询0CP 模式运行的终止电流
- 例子:设置语法::OCP:CURRent:END12.358 <CR><LF>
 注:12.358-设置的电流值,Float类型,单位A,范围0[~]额定电流,最大3位小数有效值。
 查询语法::OCP:CURRent:END?<CR><LF>
 返回:12.358
- 8、:0CP:VOLTage:END 此命令用于设置和查询OCP 模式运行终止电压
- 例子: 设置语法: :OCP: VOLTage: END2. 358 <CR><LF>
 - 注: 2.358 设置的电压值, Float 类型,单位V,范围0[~]模式额定电压,最大3位小数有效值。
 查询语法: :0CP:VOLTage:END?<CR><LF>
 返回: 2.358
- 9、:0CP:CURRent:CHECk:UPLMt 此命令用于设置和查询0CP 模式运行结果的检查上限
- 例子: 设置语法::OCP:CURRent:CHECk:UPLMt 13.358 <CR><LF>
 注: 13.358 设置的电流值, Float 类型, 单位A, 范围0[~]额定电流, 最大 3 位小数有效值。
 查询语法::OCP:CURRent:CHECk:UPLMt?<CR><LF>
 返回: 13.358
- 10、:0CP:CURRent:CHECk:L0LMt 此命令用于设置和查询0CP 模式运行结果的检查下限
- 例子: 设置语法: :OCP:CURRent:CHECk:LOLMt 10.358 <CR><LF>
 - 注: 10.358-设置的电流值, Float类型, 单位A, 范围O[~]额定电流, 最大3位小数有效值。 查询语法: :OCP:CURRent:CHECk:LOLMt?<CR><LF>

返回: 10.358

九、过载测试模式设置查询参数指令8

- 1、:OPP:RESUIt 此命令用于查询OPP 模式运行测试状态结果
- 例子: 查询语法: : OPP: RESUIt ?< CR><LF>
 - 返回: 300.525,20.254
 - 注: 300.525 测试结果功率值, 单位A;
 - 20.254- 测试结果动作时间, 单位ms。

2、:OPP:VOLTage:STARtup 此命令用于设置和查询OPP 模式运行开启电压

- 例子: 设置语法: : OPP: VOLTage: STARtup 32. 358 < CR><LF>
 - 注: 32.358-设置的电压值, Float类型, 单位V, 范围O~模式额定电压, 最大3位小数有效值。
 - 查询语法: :OPP:VOLTage:STARtup?<CR><LF>
 - 返回: 32.358
- 3、:OPP:TIME:STARtup:DELay 此命令用于设置和查询OPP 模式运行启动延时时间
- 例子: 设置语法:: : OPP:TIME: STARtup: DELay 1. 2<CR><LF>
 - 注: 1.2-设置的延时时间, Float类型, 单位s, 范围0~60.0, 最大1位小数有效值。
 - 查询语法: :OPP:TIME:STARtup:DELay ?<CR><LF>
 - 返回: 1.2
- 4、: OPP: POWer: STARt 此命令用于设置和查询 OPP 模式运行的启动功率值
- 例子: 设置语法: : OPP: POWer: STARt 10. 358 < CR><LF>
 - 注: 10.358 设置的功率值, Float类型, 单位W, 范围O[~]额定功率, 最大 3 位小数有效值。 查询语法: :OPP:POWer:STARt ?<CR><LF>
 - 返回: 10.358
- 5、: OPP: POWer: STEP 此命令用于设置和查询 OPP 模式运行的步进功率值
- 例子: 设置语法:: OPP:POWer: STEP 12. 358 < CR> < LF>
 - 注: 12.358-设置的功率值, Float类型, 单位W, 范围0~额定功率, 最大 3 位小数有效值。
 查询语法: :OPP:POWer:STEP ?<CR><LF>

返回: 12.358

- 6、:OPP:TIME:STEP 此命令用于设置和查询OPP 模式运行的步进时间
- 例子: 设置语法: : OPP: TIME: STEP 1. 358 < CR><LF>

注: 1.358-设置的步进时间, Float类型, 单位s, 范围0.01~3600.00, 最大2位小数有效值。

查询语法: : OPP:TIME:STEP ?<CR><LF>

返回: 1.358

7、: OPP: POWer: END 此命令用于设置和查询 OPP 模式运行的终止功率

- 例子: 设置语法: :OPP:POWer:END320.358 <CR><LF>
 - 注: 320.358-设置的功率值, Float类型, 单位A, 范围O[~]额定功率, 最大3位小数有效值。 查询语法: :OPP:POWer:END ?<CR><LF>

返回: 320.358

- 8、:OPP:VOLTage:END 此命令用于设置和查询OPP 模式运行终止电压
- 例子: 设置语法:: OPP: VOLTage: END2. 358 < CR><LF>
 - 注: 2.358-设置的电压值, Float 类型, 单位V, 范围0[~]模式额定电压, 最大3位小数有效值。 查询语法: :OPP:VOLTage:END ?<CR><LF>
 - 返回: 2.358

9、:OPP:POWer:CHECk:UPLMt 此命令用于设置和查询OPP 模式运行结果的检查上限

- 例子: 设置语法: : OPP: POWer: CHECk: UPLMt 313. 358 < CR><LF>
 - 注: 313.358-设置的功率值, Float 类型, 单位W, 范围0[~]额定功率, 最大 3 位小数有效值。
 查询语法: :OPP:POWer:CHECk:UPLMt?<CR><LF>

返回: 313.358

- 10、: OPP: POWer: CHECk: LOLMt 此命令用于设置和查询 OPP 模式运行结果的检查下限
- 例子: 设置语法: : OPP: POWer: CHECk: LOLMt 10. 358 < CR> < LF>
 - 注: 10.358-设置的功率值, Float 类型, 单位W, 范围0~额定功率, 最大3位小数有效值。

查询语法: :OPP:POWer:CHECk:LOLMt?<CR><LF>

返回: 10.358

十、电池放电模式设置查询参数指令9

1、:DISC:RESUIt 此命令用于查询DISC 模式运行测试状态结果

例子: 查询语法: :DISC:RESUIt ?<CR><LF>

返回: 3000, 20. 2, 607. 6

注: 3000 - 测试结果放电时间, 单位s;

20.2 - 测试结果放电容量, 单位 Ah;

607.6 - 测试结果放电能量, 单位 Wh.

2、:DISC:MODE 此命令用于设置和查询DISC 模式下运行的放电模式

例子: 设置语法: :DISC:MODEO<CR><LF>

注: 0-设置的放电模式,整数类型,0-CC模式,1-CR模式,2-CP模式,其它值无效。 查询语法: :DISC:MODE ?<CR><LF> 返回:0

- 3、:DISC:VALue 此命令用于设置和查询DISC 模式下运行的放电参数值
- 例子: 设置语法: :DISC:VALue 1.278 <CR><LF>
- 注: 1.278-设置的放电参数值,Float 类型,最大3位小数,如放电模式为CC时,该值为放电 电流值,取值范围同定态CCH模式。 查询语法: :DISC:VALue ?<CR><LF> 返回: 1.278
- 4、:DISC: VOLTage: END 此命令用于设置和查询DISC 模式下运行的放电截止电压
- 例子: 设置语法: :DISC:VOLTage:END2.278 <CR><LF>
 - 注: 2.278-设置的放电截止电压值,Float类型,最大3位小数,单位 V,取值范围 0[~]额定电压。
 查询语法: :DISC:VOLTage:END?<CR><LF>
 返回: 2.278
- 5、:DISC:CAPAcity:END 此命令用于设置和查询DISC 模式下运行的放电截止容量
- 例子: 设置语法: :DISC:CAPAcity:END200.2<CR><LF>
 - 注: 200.2 设置的放电截止容量值,Float类型,最大1位小数,单位Ah,取值范围 0[~]9999999。
 查询语法: :DISC:CAPAcity:END?<CR><LF>
 返回: 200.2
- 6、:DISC:TIME:END 此命令用于设置和查询DISC 模式下运行的放电截止时间
- 例子: 设置语法: :DISC:TIME:END20000 <CR><LF> 注: 20000-设置的放电截止时间,整数类型,单位s,取值范围 0~360000。

查询语法: :DISC:TIME:END ?<CR><LF>

返回: 20000

十一、负载效应测试模式设置查询参数指令10

- 1、:LOEF:RESUIt 此命令用于查询LOEF 模式运行测试状态结果
- 例子: 查询语法: :LOEF:RESUIt ?<CR><LF>

返回: 0.828, 12.3, 70.6

- 注: 0.828 测试结果电压变化, 单位 V;
 - 12.3 测试结果负载调整率,单位 %;

70.6 - 测试结果电源内阻, 单位 mΩ.

- 2、:LOEF: CURRent: LOW 此命令用于设置和查询 LOEF 模式下运行的低位电流
- 例子:设置语法::LOEF:CURRent:LOWO.278<CR><LF>
 注: 0.278-设置的电流值, Float类型,最大3位小数,单位 A,取值范围同定态 CCH模式。
 查询语法::LOEF:CURRent:LOW?<CR><LF>
 返回: 0.278
- 3、:LOEF: CURRent: HIGH 此命令用于设置和查询LOEF 模式下运行的高位电流
- 例子:设置语法::LOEF:CURRent:HIGH2.278<CR><LF>
 注: 2.278-设置的电流值,Float类型,最大3位小数,单位 A,取值范围同定态 CCH模式。
 查询语法::LOEF:CURRent:HIGH?<CR><LF>
 返回: 2.278
- 4、:LOEF:CURRent:NORMal 此命令用于设置和查询LOEF 模式下运行的正常电流
- 例子: 设置语法: :LOEF:CURRent:NORMall.278 <CR><LF>
 - 注: 1.278 设置的电流值, Float 类型, 最大3 位小数, 单位 A, 取值范围同定态 CCH 模式。

查询语法: :LOEF:CURRent:NORMal?<CR><LF>

返回: 1.278

- 5、:LOEF:TIME 此命令用于设置和查询LOEF 模式下每个电流运行的持续时间
- 例子: 设置语法: :LOEF:TIME1.2 <CR><LF>

注: 1.2-设置的时间, Float 类型, 最大1 位小数, 单位 s, 取值范围 0.1~60.0s。

查询语法: :LOEF:TIME ?<CR><LF>

返回: 1.2

十二、电源内阻测试模式设置查询参数指令 11

1、:DC_R:RESUIt 此命令用于查询DC_R 模式运行测试状态结果

例子: 查询语法: :DC_R:RESUIt ?<CR><LF>

返回: 35.8,1

注: 35.8 - 测试结果电源内阻, 单位mΩ;

1 - 测试结果, 0-测试中,结果未知, 1-测试结果成功, 2-测试结果失败;
 2、:DC_R:CURRent1 此命令用于设置和查询DC_R模式下运行的电流值1

- 例子: 设置语法: :DC R:CURRent10.278 <CR><LF>
 - 注: 0.278 设置的电流值, Float 类型, 最大3位小数, 单位A, 取值范围同定态 CCH模式。 查询语法: :DC R:CURRent1 ?<CR><LF>

返回: 0.278

- 3、:DC_R:TIME1 此命令用于设置和查询DC_R 模式下运行的脉宽1
- 例子: 设置语法: :DC_R:TIME12.5 <CR><LF>
 - 注: 2.5-设置的脉宽, Float 类型, 最大1 位小数, 单位s, 取值范围1~60.0。
 - 查询语法: :DC_R:TIME1 ?<CR><LF>

返回: 2.5

- 4、:DC_R:CURRent2 此命令用于设置和查询DC_R模式下运行的电流值2
- 例子: 设置语法: :DC R:CURRent 2 0.278 <CR><LF>
 - 注: 0.278-设置的电流值, Float 类型, 最大3位小数, 单位 A, 取值范围同定态 CCH模式。
 查询语法: :DC_R: CURRent 2?<CR><LF>

返回: 0.278

- 5、: DC R: TIME2 此命令用于设置和查询 DC R 模式下运行的脉宽2
- 例子:设置语法::DC_R:TIME 2 2.5 <CR><LF>
 注: 2.5 设置的脉宽, Float 类型,最大1位小数,单位s,取值范围 1~60.0。
 查询语法::DC_R:TIME 2?<CR><LF>

返回: 2.5

- 6、:DC_R:CHECk:UPLMt 此命令用于设置和查询DC_R模式下运行结果判断上限值
- 例子: 设置语法: :DC_R:CHECk:UPLMt1000.278<CR><LF>
 - 注: 1000.278-设置的电阻值, Float 类型, 最大3位小数, 单位mΩ, 取值范围 0[~]999999。 查询语法: :DC_R:CHECk:UPLMt?<CR><LF>

返回: 1000.278

- 7、:DC_R:CHECk:LOLMt 此命令用于设置和查询DC_R模式下运行结果判断下限值
- 例子: 设置语法: :DC_R:CHECk:UPLMt1.278<CR><LF>
 - 注: 1.278-设置的电阻值, Float类型, 最大3位小数, 单位mΩ, 取值范围 0[~]99999。 查询语法: :DC R:CHECk:UPLMt?<CR><LF>

返回: 1.278

十三、LED 模拟测试模式设置查询参数指令12

- 1、:LED:VOLTage 此命令用于设置和查询LED 模式下运行的 LED 电压
- 例子: 设置语法: :LED: VOLTage 10. 278 <CR><LF>
 - 注: 10.278-设置的电压值, Float 类型, 最大3位小数,单位V, 取值范围同定态CVH模式。
 查询语法: :LED:VOLTage ?<CR><LF>
 返回: 10.278
- 2、:LED:CURRent 此命令用于设置和查询LED 模式下运行的 LED 电流
- 例子: 设置语法: :LED:CURRent0.278 <CR><LF>
 - 注: 0.278-设置的电流值,Float 类型,最大3位小数,单位 A,取值范围同定态 CCH模式。
 查询语法: :LED:CURRent ?<CR><LF>
 返回: 0.278
- 3、:LED:COEFficient 此命令用于设置和查询LED 模式下运行的 LED 的内阻系数
- 例子:设置语法::LED:COEFficient0.578 <CR><LF>
 注: 0.578-设置的电阻值,Float类型,取值范围 0.01~1.00。
 查询语法::LED:COEFficient?<CR><LF>
 返回: 0.578

十四、动态扫频测试模式设置查询参数指令13

- 1、:SWEEp:RESUIt 此命令用于查询 SWEEP 模式运行测试状态结果
- 例子: 查询语法: :SWEEp:RESUIt ?<CR><LF>

返回: 35.868, 1.579, 35.625, 2.562

- 注: 35.868 测试结果峰值电压, 单位V;
 - 1.579 测试结果峰值频率, 单位 KHz;
 - 35.625 测试结果谷值电压, 单位V;
 - 2.562 测试结果谷值频率, 单位 KHz;
- 2、:SWEEp:CURRent1 此命令用于设置和查询SWEEP 模式下运行的主值电流值1
- 例子: 设置语法: :DC R:CURRent10.278<CR><LF>
 - 注: 0.278 设置的电流值, Float 类型, 最大3位小数, 单位A, 取值范围同定态CCH模式。

查询语法: :SWEEp:CURRent1?<CR><LF>

返回: 0.278

3、:SWEEp:CURRent2 此命令用于设置和查询SWEEP 模式下运行的瞬值电流值2

- 例子:设置语法::DC_R:CURRent2 1.278 <CR><LF>
 注: 1.278 设置的电流值, Float 类型,最大3 位小数,单位 A,取值范围同定态 CCH模式。
 查询语法::SWEEp:CURRent 2?<CR><LF>
 返回: 1.278
- 4、:SWEEp:CURRent:RISE 此命令用于设置和查询SWEEP 模式运行电流的上升斜率
- 例子: 设置语法::SWEEp:CURRent:RISE 0.358 <CR><LF>
 - 注: 0.358-设置的电流上升斜率值, Float 类型, 单位A/us (ms), 范围0.001~2.000, 最大 3位小数有效值。
 - 查询语法: :SWEEp:CURRent:RISE?<CR><LF>
 - 返回: 0.358
- 5、:SWEEp:CURRent:FALL 此命令用于设置和查询SWEEP 模式运行电流的下降斜率
- 例子: 设置语法: :SWEEp:CURRent:FALLO.358 <CR><LF>
 - 注: 0.358-设置的电流下降斜率值, Float类型, 单位A/us (ms), 范围0.001~2.000, 最大 3位小数有效值。
 - 查询语法: :SWEEp:CURRent:FALL?<CR><LF>

返回: 0.358

- 6、:SWEEp:DUTY 此命令用于设置和查询 SWEEP 模式下运行的占空比
- 例子:设置语法::SWEEp:DUTY0.5 < CR><LF>
 注: 0.5-设置的占空比,Float 类型,最大2位小数,取值范围0.01~1.00。
 查询语法::SWEEp:DUTY ? < CR><LF>
 返回: 0.5

十五、输出波形模式设置查询参数指令14

1、:WAVE:CURRent:PEAK 此命令用于设置和查询WAVE 模式下运行的峰值电流值

- 例子: 设置语法: :WAVE:CURRent:PEAK 2.278 <CR><LF>
 - 注: 2.278-设置的电流值, Float类型, 最大3位小数, 单位 A, 取值范围同定态 CCH模式。 查询语法: :WAVE:CURRent:PEAK?<CR><LF> 返回: 2.278
- 2、:WAVE:CURRent:VALLey 此命令用于设置和查询WAVE 模式下运行的谷值电流值
- 例子: 设置语法: :WAVE:CURRent:VALLey 0.278 <CR><LF>
 - 注: 0.278-设置的电流值, Float 类型, 最大3位小数, 单位 A, 取值范围同定态 CCH模式。

查询语法: :WAVE:CURRent:VALLey?<CR><LF> 返回: 0.278

- 3、:WAVE: FREQuency 此命令用于设置和查询WAVE 模式下运行的波形频率
- 例子: 设置语法: :WAVE:FREQuency1.278 <CR><LF>
 - 注: 1.278-设置的频率值, Float类型, 最大3位小数, 单位 KHz, 取值范围0.001~30.000。 查询语法: :WAVE:FREQuency?<CR><LF> 返回: 1.278

十六、复合模式设置查询参数指令15

- 1、:CVCC: VOLTage 此命令用于设置和查询 CV-CC 模式恒压值
- 例子:设置语法::CVCC:VOLTage12.278 <CR><LF>
 注: 12.278-设置的电压值,Float类型,最大3位小数,单位V,取值范围同定态CVH模式。
 查询语法::CVCC:VOLTage?<CR><LF>
 返回: 12.278
- 2、:CVCC:CURRent 此命令用于设置和查询CV-CC 模式恒流值
- 例子:设置语法::CVCC:CURRent2.278 <CR><LF>
 注: 2.278-设置的电流值, Float 类型,最大3位小数,单位A,取值范围同定态 CCH模式。
 查询语法::CVCC:CURRent?<CR><LF>
 返回: 2.278
- 3、:CRCC:RESIstance 此命令用于设置和查询CR-CC 模式恒阻值
- 例子: 设置语法::CRCC:RESIstance12.278 <CR><LF>
 - 注: 12.278 设置的电阻值, Float类型, 最大3位小数,单位Ω,取值范围同定态CRH模式。
 查询语法: :CRCC:RESIstance ?<CR><LF>
 返回: 12.278
- 4、:CRCC:CURRent 此命令用于设置和查询CR-CC 模式恒流值
- 例子:设置语法::CRCC:CURRent 2.278 <CR><LF>
 注: 2.278 设置的电流值, Float 类型,最大3位小数,单位A,取值范围同定态 CCH模式。
 查询语法::CRCC:CURRent ?<CR><LF>
 返回: 2.278
- 5、: CPCC: POWer 此命令用于设置和查询 CP-CC 模式恒功率值

- 例子: 设置语法: : CPCC: POWer 120. 278<CR><LF>
 - 注: 120.278-设置的功率值, Float类型, 最大3位小数, 单位 W, 取值范围同定态 CP 模式。 查询语法: :CPCC:POWer?<CR><LF>

返回: 120.278

- 6、:CPCC:CURRent 此命令用于设置和查询CP-CC 模式恒流值
- 例子: 设置语法: : CPCC: CURRent 2. 278 < CR> < LF>
 - 注: 2.278-设置的电流值, Float类型, 最大3位小数, 单位A, 取值范围同定态 CCH模式。
 查询语法: :CPCC:CURRent?<CR><LF>

返回: 2.278

第七章 MODBUS通讯协议

支持Modbus-RTU协议,波特率 9600、19200、38400、115200可选(通讯设置页面中可设置更改,建议使用115200),无校验,8位数据位,1位停止位。

发送格式:

地址码	功能码	地址高位	地址低位	数据长度高位	数据长度低位	CRC 低	CRC 高

返回格式:

地址码	功能码	数据长度(Byte)	数据区	CRC 低	CRC 高
-----	-----	------------	-----	-------	-------

注:

地址码:在一个网络中,请确保地址码的唯一性,范围 0-255,地址 0 用作广播码。 功能码:本产品只用到 03H和16H 功能码,分别对用读取和设置寄存器数据。

数据区: 通讯中数据低位在前。

序号	地址	寄存器名称	数据类型	K	说明	数据范围	读写
1	0x0000	Model	string	6	产品型号		R
2	0x0010	UI_Version	string	10	显示软件版本号		R
3	0x0020	CTL_Version	string	10	控制软件版本号		R
4	0x0030	COM_Version	string	10	通讯软件版本号		R
5	0x0060	Real_Volt	float	2	实时电压值 (V)		R
6	0x0062	Real_Curr	float	2	实时电流值(A)		R
7	0x0064	Real_Power	float	2	实时功率值(W)		R
8	0x0066	Real_Resi	float	2	实时电阻值 (Ω)		R
9	0x0068	Real_Temp	float	2	实时温度值(℃)		R
10	0x006A	Run_Time	U32	2	实时运行时间 (s)		R
11	0x006C	Real_Status	032	2	实时运行状态	bti[31:24]- 运行模式, bit[23:20]- 带载状态, bit[19:0]- 害警状态; 运 行模式: 0-CCH, 1-CCL, 2-CVH, 3-CVL, 4-CRH, 5-CRL, 6-CP, 7-CCDH, 8-CCDL, 9- CRDH, 10-CRDL, 11-CPD, 12-SEQ, 13-AUTO, 14-0CP, 15-0PP, 16-DISC, 17- LOEF, 18-DC_R, 19-LED, 20-SWEEP, 21-WAVE, 22-CV_CC, 23-CR_CC, 24-CP_CC 。 带载状态: 0-不带载, 1-带载中, 2-带载暂停 告警状态: bit2:1-过载, bit3:1-过流, bit4:1-过压, bit5:1-欠压, bit6:1-过温, bit7:1-反接, bit8:1-电流未校准, bit9:1-电压未校准, bit10:1-参数加载异常, bit11:1-通讯超时, bit12:1-过压保护, bit13:1-过流保护, bit14:1-过载保护, bit15:1-瞬态电流过大, 其它 bit位预留。	R
12	0x0070	RunMode	U16	1	运行模式	0-CCH, 1-CCL, 2-CVH, 3-CVL, 4-CRH, 5-CRL, 6-CP, 7-CCDH, 8-CCDL, 9- CRDH, 10-CRDL, 11-CPD, 12-SEQ, 13-AUTO, 14-OCP, 15-OPP, 16-DISC, 17- LOEF, 18-DC_R, 19-LED, 20-SWEEP, 21-WAVE, 22-CV_CC, 23-CR_CC, 24- CP_CC , 其它值无效。	RW
13	0x0071	0n0ff	U16	1	带载开关	写指令0/1-带载状态下关闭带载,非带载状态下启动带载(功能同 ON 按键); ; 读指令返回当前带载状态值:0-不带载.1-带载中.2-带载暂停。	RW
14	0x0072	Trigger	U16	1	触发开关	写指令0/1-非触发状态下触发一次(功能同Trigger 按键); 读指令返回当前触发状态值: 0-非触发状态, 1- 触发中。	RW
15	0x0073	Short	U16	1	短路开关	写指令,菜单中设置短路按键行为为Toggle时:0/1-非短路测试状态 下开启短路测试,短路测试状态下关闭短路测试;菜单中设置短路按 键行为为Hold时:0-短路测试状态下关闭短路测试,1-非短路测试状态 下开启短路测试; 读指令返回当前短路测试状态值:0-未开启短路测试,1-短路测试中 。	RW
16	0x0074	CleanProtStatus	U16	1	清除保护状态	写1有效。	W
17	0x0080	CchCurr	float	2	CCH模式电流 (A)	0 [~] 额定电流	RW
18	0x0082	CchCurrRise	float	2	CCH模式电流上升斜率 (A/us、A/ms)	取值范围: 0.001~2.000	RW
19	0x0084	CchCurrFall	Float	2	CCH模式电流下降斜率 (A/us、A/ms)	取值范围: 0.001~2.000	RW
20	0x0086	CclCurr	float	2	CCL模式电流 (A)	0~额定电流	RW

序号	地址	寄存器名称	数据类型	K	说明	数据范围	读写
21	0x0088	CclCurrRise	float	2	CCL模式电流上升斜率 (A/us, A/ms)	取值范围: 0.001~0.200	RW
22	0x008A	CclCurrFall	Float	2	CCL模式电流下降斜率 (A/us、A/ms)	取值范围: 0.001~0.200	RW
23	0x0090	CvhVolt	float	2	CVH模式电压 (V)	0 [~] 额定电压	RW
24	0x0092	CvhVoltRise	float	2	CVH模式电压上升斜率 (V/us V/ms)	取值范围: 0.001~100.000	RW
25	0x0094	CvhVoltFall	Float	2	CVH模式电压下降斜率 (V/us、V/ms)	取值范围: 0.001~100.000	RW
26	0x0096	CvlVolt	float	2	CVL模式电压 (V)	0~额定电压	RW
27	0x0098	CvlVoltRise	float	2	CVL模式电压上升斜率 (V/us, V/ms)	取值范围: 0.001~20.000	RW
28	0x009A	CvlVoltFall	Float	2	CVL模式电压下降斜率 (V/us, V/ms)	取值范围: 0.001~20.000	RW
29	0x00x0	CrhResi	float	2	CRH模式电阻 (Ω)	0~模式电阻值	RW
30	0x00A2	CrhCurrRise	float	2	CRH模式电流上升斜率 (A/us、A/ms)	取值范围: 0.001~2.000	RW
31	0x00A4	CrhCurrFall	Float	2	CRH模式电流下降斜率 (A/us、A/ms)	取值范围: 0.001~2.000	RW
32	0x00A6	CrlResi	float	2	CRL模式电阻 (Ω)	0~模式电阻值	RW
33	0×00A8	CrlCurrRise	float	2	CRL模式电流上升斜率 (A/us、A/ms)	取值范围: 0.001~0200	RW
34	0x00AA	CrlCurrFall	Float	2	CRL模式电流下降斜率 (A/us、A/ms)	取值范围: 0.001~0.200	RW
35	0x00B0	CpPower	float	2	CP模式功率 (W)	0~额定功率	RW
36	0x00B2	CpCurrRise	float	2	CP模式电流上升斜率 (A/us、A/ms)	取值范围: 0.001~2.000	RW
37	0x00B4	CpCurrFall	Float	2	CP模式电流下降斜率 (A/us、A/ms)	取值范围: 0.001~2.000	RW
38	0x00C0	CcdhRunMode	U32	2	CCDH运行模式	0-连续,1-脉冲,2-翻转,其它值无效。	RW
39	0x00C2	CcdhCurr1	float	2	CCDH模式电流1 (A)	0 [~] 额定电流	RW
40	0x00C4	CcdhCurr2	float	2	CCDH模式电流2 (A)	0~额定电流	RW
41	0x00C6	CcdhTime1	float	2	CCDH模式脉宽1 (s)	0.01~60000.00	RW
42	0x00C8	CcdhTime2	float	2	CCDH模式脉宽2 (s)	0. 01~60000. 00	RW
43	0x00CA	CcdhCurrRise	float	2	CCDH模式电流上升斜率 (A/us、A/ms)	取值范围: 0.001~2.000	RW
44	0x000c	CcdhCurrFall	Float	2	CCDH模式电流下降斜率 (A/us、A/ms)	取值范围: 0.001~2.000	RW
45	0x00D0	CcdlRunMode	U32	2	CCDL运行模式	0-连续,1-脉冲,2-翻转,其它值无效。	RW
46	0x00D2	Ccd Curr1	float	2	CCDL模式电流1 (A)	0~模式额定电流	RW
47	0x00D4	Ccd Curr2	float	2	CCDL模式电流2 (A)	0~模式额定电流	RW
48	0x00D6	CcdlTime1	float	2	CCDL模式脉宽1 (s)	0. 01~60000. 00	RW
49	0x00D8	CcdlTime2	float	2	CCDL模式脉宽2 (s)	0. 01~60000. 00	RW
50	0x00DA	CcdlCurrRise	float	2	CCDL模式电流上升斜率 (A/us、A/ms)	取值范围: 0.001~0.200	RW
51	0x00DC	CcdlCurrFall	Float	2	CCDL模式电流下降斜率 (A/us、A/ms)	取值范围: 0.001~0.200	RW
52	0×00E0	CrdhRunMode	U32	2	 CRDH运行模式	0-连续,1-脉冲,2-翻转,其它值无效。	RW
53	0x00E2	CrdhResi1	float	2	CRDH模式电阻1 (A)	0~模式额定电阻	RW

54	0x00E4	CrdhResi2	float	2	CRDH模式电阻2 (A)	0~模式额定电阻	RW
55	0x00E6	CrdhTime1	float	2	CRDH模式脉宽1 (s)	0. 01~60000. 00	RW
56	0x00E8	CrdhTime2	float	2	CRDH模式脉宽2 (s)	0. 01~60000. 00	RW
57	0x00EA	CrdhCurrRise	float	2	CRDH模式电流上升斜率 (A/us、A/ms)	取值范围: 0.001~2.000	RW
58	0x00EC	CrdhCurrFall	Float	2	CRDH模式电流下降斜率 (A/us、A/ms)	取值范围: 0.001~2.000	RW
59	0x00F0	CrdlRunMode	U32	2	CRDL运行模式	0-连续,1-脉冲,2-翻转,其它值无效。	RW
60	0x00F2	CrdIResi1	float	2	CRDL模式电阻1 (A)	0~模式额定电阻	RW
61	0x00F4	Crd Resi2	float	2	CRDL模式电阻2 (A)	0~模式额定电阻	RW
62	0x00F6	CrdlTime1	float	2	CRDL模式脉宽1 (s)	0. 01~60000. 00	RW
63	0x00F8	CrdlTime2	float	2	CRDL模式脉宽2 (s)	0. 01~60000. 00	RW
64	0x00FA	CrdlCurrRise	float	2	CRDL模式电流上升斜率 (A/us、A/ms)	取值范围: 0.001~0.200	RW
65	0x00FC	CrdlCurrFall	Float	2	CRDL模式电流下降斜率 (A/us、A/ms)	取值范围: 0.001~0.200	RW
66	0x0100	CpdRunMode	U32	2	CPD运行模式	0-连续,1-脉冲,2-翻转,其它值无效。	RW
67	0x0102	CpdPower1	float	2	CPD模式功率1 (A)	0~模式额定功率	RW
68	0x0104	CpdPower2	float	2	CPD模式功率2 (A)	0~模式额定功率	RW
69	0x0106	CpdTime1	float	2	CPD模式脉宽1 (s)	0. 01~60000. 00	RW
70	0x0108	CpdTime2	float	2	CPD模式脉宽2 (s)	0. 01~60000. 00	RW
71	0x010A	CpdCurrRise	float	2	CPD模式电流上升斜率 (A/us、A/ms)	取值范围: 0.001~2.000	RW
72	0x010C	CpdCurrFall	Float	2	CPD模式电流下降斜率 (A/us、A/ms)	取值范围: 0.001~2.000	RW
73	0x0110	SeqRunFile	U32	2	SEQ运行文件编号	取值范围: 1-50	RW
73	0x0112	SeqStatusResult	U32+U32	4	SEQ运行状态结果	- U32类型,当前SEQ运行步骤 - U32类型,当前SEQ运行周期	R
74	0x0120	SeqEditFile	U32	2	SEQ编辑文件编号	取值范围: 1-50	RW
75	0x0122	SeqEditFileLength	U32	2	SEQ编辑文件长度	取值范围: 1-20	RW
76	0x0124	SeqEditRuns	U32	2	SEQ编辑文件运行次数	取值范围: 0-60000, 0表示无限循环	RW
77	0x0126	SeqEditFileLink	U32	2	SEQ编辑文件链接序号	取值范围: 0-50, 0表示没有链接文件	RW
78	0x0128	SeqEditStepNum	U32	2	SEQ编辑文件待编辑第几步	- U32类型,当前SEQ编辑步的第几步,取值范围1~20;	
79	0x012A	SeqEditStepCont	U32 +Float +Float +Float	8	SEQ编辑文件待编辑步内容	 - U32类型,当前SEQ编辑步的模式:0-CCH,1-CCL,2-CVH,3-CVL,4-CRH,5-CRL,6-CP; - Float类型,当前SEQ编辑步的带载值,取值范围参考运行模式; - Float类型,当前SEQ编辑步的单步斜率,取值范围参考运行模式; - Float类型,当前SEQ编辑步的单步时间,0.0001~3600s 	RW
80	0x0140	AutoRunFile	U32	2	AUT0模式运行文件编号	取值范围: 1-50	RW
81	0x0142	AutoStatusResult	U32 +U32 +u32	6	AUTO运行状态结果	 - U32 类型,当前 AUTO 运行步骤: - U32 类型,当前 AUTO 测试各步结果:bit[19:0]对应第 20~1步,0代表成功,1代表失败: - U32 类型,当前 AUTO 测试结果:0-测试中,结果未知,1-测试成功,2-测试失败。 	R
82	0x0148	AutoVoltConnect	float	2	AUTO模式接入电压 (V)	0~额定电压	RW

83	0x014A	AutoVoltDisconnect	float	2	AUTO模式断开电压 (V)	0~额定电压	RW
84	0x0150	AutoEditFile	U32	2	AUTO编辑文件编号	取值范围: 1-50	RW
85	0x0152	AutoEditFileLength	U32	2	AUTO编辑文件长度	取值范围: 1-20	RW
86	0x0154	AutoEditStepNum	U32	2	AUTO编辑文件待编辑第几步	- U32类型,当前AUTO编辑步的第几步,取值范围1~20;	
87	0x0155	AutoEditStepCont	U32 +Float +Float +U32 +U32 +Float +Float	14	AUTO编辑文件待编辑步内容	 - U32类型,当前AUTO编辑步的模式,0-CC,1-CV,2-CR,3-CP; - Float类型,当前AUTO编辑步的单步延时时间,0.1-25.5s(25.5时由触发信号决定); - Float类型,当前AUTO编辑步的带载值,取值范围参考模式额定值; - U32类型,当前AUTO编辑步的短路使能,0-不使能,1-使能,使能后当前步模拟短路测试; -U32类型,当前AUTO编辑步的检查内容,0-不检查,1-检查电压,2-检查电流,3-检查功率; -Float类型,当前AUTO编辑步的检查值上限; -Float类型,当前AUTO编辑步的检查值下限。 	RW
88	0x0170	OcpResult	Float +Float	4	0CP模式运行结果	-Float类型,当前OCP模式运行结果的过流动作电流值; -Float类型,当前OCP模式运行结果的过流动作时间,单位ms。	R
89	0x0174	OcpStartupVolt	Float	2	0CP模式运行启动电压 (V)	0~额定电压	RW
90	0x0176	OcpStartupDelay	Float	2	OCP模式运行启动延时 (s)	0~60.0s	RW
91	0x0178	OcpStartCurr	Float	2	OCP模式运行开始电流 (A)	0~颜定电流	RW
92	0x017A	OcpStepCurr	Float	2	OCP模式运行步进电流 (A)	0~额定电流	RW
93	0x017C	OcpStepTime	Float	2	0CP模式运行步进时间 (s)	0.01~3600.00s	RW
94	0x017E	0cpEndCurr	Float	2	OCP模式运行结束电流 (A)	0~颜定电流	RW
95	0x0180	0cpEndVolt	Float	2	0CP模式运行结束电压 (V)	0~额定电压	RW
96	0x0182	OcpCheckUpLmtCurr	Float	2	OCP模式结果检查上限 (A)	0~额定电流	RW
97	0x0184	OcpCheckLowLmtCurr	Float	2	0CP模式结果检查下限 (A)	0~额定电流	RW
98	0x0190	OppResult	Float +Float	4	OPP模式运行结果	-Float类型,当前OPP模式运行结果的过流动作功率值; -Float类型,当前OPP模式运行结果的过流动作时间,单位ms。	R
99	0x0194	OppStartupVolt	Float	2	OPP模式运行启动电压 (V)	0~额定电压	RW
100	0x0196	OppStartupDelay	Float	2	OPP模式运行启动延时 (s)	0~60.0s	RW
101	0x0198	OppStartPower	Float	2	OPP模式运行开始功率 (A)	0~ 额定功率	RW
102	0x019A	OppStepPower	Float	2	OPP模式运行步进功率 (A)	0~额定功率	RW
103	0x019C	OppStepTime	Float	2	OPP模式运行步进时间 (s)	0. 01 [~] 3600. 00s	RW
104	0x019E	OppEndPower	Float	2	OPP模式运行结束功率 (W)	0~额定功率	RW
105	0x01A0	0ppEndVolt	Float	2	OPP模式运行结束电压 (V)	0~颜定电压	RW
106	0x01A2	OppCheckUpLmtPower	Float	2	OPP模式结果检查上限 (W)	0~颜定功率	RW
107	0x01A4	OppCheckLowLmtPower	Float	2	OPP模式结果检查下限 (W)	0~颜定功率	RW
108	0x01B0	DiscStatusResult	U32 +Float +Float	6	DISC模式运行结果	-U32类型,当前DISC模式运行状态结果的放电时长,单位s: -Float类型,当前DISC模式运行状态结果的放电容量,单位Ah; -Float类型,当前DISC模式运行状态结果的放电能量,单位Wh。	R
109	0x01B6	DiscRunMode	U32	2	DISC模式运行模式	0-CC 模式,1-CR 模式,2-CP 模式,其它值无效。	RW
110	0x01B8	DiscLoadValue	Float	2	DISC模式带载值 (A/Ω/W)	0~额定电流/电阻/功率	RW
111	0x01BA	DiscEndVolt	Float	2	DISC模式结束电压 (V)	0~额定电压	RW
112	0x01BC	DiscEndCapacity	Float	2	DISC模式结束容量 (Ah)	0~999999. 0Ah	RW

113	0x01BE	DiscEndTime	U32	2	DISC模式结束时间 (s)	0~360000s	RW
114	0x01C0	LoefResult	Float +Float +Float	6	LOEF模式运行结果	 -Float类型,当前LOEF模式运行状态结果的电压变化,单位V; -Float类型,当前LOEF模式运行状态结果的负载调整率(%); -Float类型,当前LOEF模式运行状态结果的电源内阻,单位mΩ。 	R
115	0x01C6	LoefLowCurr	Float	2	LOEF模式运行低位电流 (A)	0~额定电流	RW
116	0x01C8	LoefHighCurr	Float	2	LOEF模式运行高位电流 (A)	0~额定电流	RW
117	0x01CA	LoefNormalCurr	Float	2	LOEF模式运行正常电流 (A)	0~额定电流	RW
118	0x01D0	DcrResult	Float +U32	4	DC_R模式运行结果	 -Float类型,当前DC_R模式运行结果的电池内阻,单位mQ; -U32类型,当前DC_R模式运行结果,0-测试中结果未知,1-测试成功,2-测试失败,4-测试异常,其它值无效。 	R
119	0x01D4	DcrCurr1	Float	2	DC_R模式电流值1 (A)	0~额定电流	RW
120	0x01D6	DcrTime1	Float	2	DC_R模式脉宽1 (s)	1.0 [~] 60.0s	RW
121	0x01D8	DcrCurr2	Float	2	DC_R模式电流值2 (A)	0~额定电流	RW
122	0x01DA	DcrTime2	Float	2	DC_R模式脉宽2 (s)	1.0 [~] 60.0s	RW
123	0x01DC	DcrCheckUpLmtResi	Float	2	DC_R模式结果检查上限 (mΩ)	0 [~] 99999.000	RW
124	0x01DE	DcrCheckLowLmtResi	Float	2	DC_R模式结果检查下限 (mΩ)	0 [~] 99999.000	RW
125	0x01E0	LedVolt	Float	2	LED模式运行LED电压 (V)	0~颜定电压	RW
126	0x01E2	LedCurr	Float	2	LED模式运行LED电流 (A)	0~额定电流	RW
127	0x01E4	LedInterResiCoef	Float	2	LED模式运行LED内阻系数	0. 01~1. 00	RW
128	0x01F0	SweepResult	Float +Float +Float +Float	8	SWEEP模式运行结果	-Float类型,当前SWEEP模式运行结果的峰值电压,单位V; -Float类型,当前SWEEP模式运行结果的峰值频率,单位kHz; -Float类型,当前SWEEP模式运行结果的谷值电压,单位V; -Float类型,当前SWEEP模式运行结果的谷值顿率,单位V;	R
129	0x01F8	SweepCurr1	Float	2	SWEEP模式运行主值电流1 (A)	0~额定电流	RW
130	0x01FA	SweepCurr2	Float	2	SWEEP模式运行瞬值电流2 (A)	0~颜定电流	RW
131	0x01FC	SweepCurrRise	float	2	SWEEP模式电流上升斜率 (A/us、A/ms)	取值范围: 0.001~0.200	RW
132	0x01FE	SweepCurrFall	Float	2	SWEEP模式电流下降斜率 (A/us、A/ms)	取值范围: 0.001~0.200	RW
133	0x0200	SweepDutyCycle	float	2	SWEEP模式运行占空比	取值范围: 0.01~1.00	RW
134	0x0202	SweepStartFreq	Float	2	SWEEP模式运行起始频率 (kHz)	取值范围: 0.001~30.000	RW
135	0x0204	SweepEndFreq	Float	2	SWEEP模式运行结束频率 (kHz)	取值范围: 0.001~30.000	RW
136	0x0206	SweepStepFreq	Float	2	SWEEP模式运行步进频率 (kHz)	取值范围: 0.001~30.000	RW
137	0x0208	SweepStepTime	Float	2	SWEEP模式运行持续时间 (s)	取值范围: 0.001~99.999	RW
138	0x0210	WavePeakCurr	Float	2	WAVE模式运行峰值电流 (A)	0~额定电流	RW
139	0x0212	WaveValleyCurr	Float	2	WAVE模式运行谷值电流 (A)	0~额定电流	RW
140	0x0214	WaveFreq	Float	2	WAVE模式运行频率 (kHz)	取值范围: 0.001~10.000	RW
141	0x0220	CvccVolt	Float	2	CV_CC模式运行电压 (V)	0~额定电压	RW
142	0x0222	CvccCurr	Float	2	CV_CC模式运行电流 (A)	0~额定电流	RW
143	0x0224	CrccVolt	Float	2	CR_CC模式运行电阻 (Ω)	0~额定电阻	RW
144	0x0226	CrccCurr	Float	2	CR_CC模式运行电流 (A)	0~额定电流	RW
146	0x0228	CpccVolt	Float	2	CP_CC模式运行功率 (W)	0~额定功率	RW
147	0x022A	CpccCurr	Float	2	CP_CC模式运行电流 (A)	0~额定电流	RW
148	0x0300	SetVoltSense	U32	2	应用菜单设置远近端采样	0-近端采样,1-远端采样	RW

第八章 故障检查

当负载不能正常工作时,请依照本章节描述进行检查、排除。若问题依然不能解决,请 联系代理商或美瑞克电子科技售后。

表格 6-1负载故障自查表

问题	可能原因	解决办法
测量精度不在规格范围内	器件老化导致特性偏差	重新校准
带载精度不在规格范围内	器件老化导致特性偏差	重新校准
过温保护 OT	 1.环境温度过高 2.通风不良 3.风扇损坏 	 1.置机器于 0~40 °C环境 2.改善机器的通风 3.联系经销商或美瑞克电子科技
过功率保护 OPP	带载功率超出设定	减小负载或增大 OPP 设定
过流保护 OCP	带载电流超出设定	减小负载或增大 OCP 设 定
过压保护 OVP	带载电压超出设定	减小输入电压或增大 OVP 设定
温度开关保护 E01	 1.环境温度过高 2.通风不良 3.风扇损坏 	 1.置机器于 0~40 °C环境 2.改善机器的通风 3.联系经销商或美瑞克电子科技
风扇工作异常 E02	风扇损坏	 重启负载 2联系经销商或美瑞克电子科技

表格 6-2开机故障自查表

问题	可能原因	解决办法
屏幕只显示以下字符	各我内述通信昆尚	1. 重启负载
(c)All rights reserved.	贝轼门印迪信开市	2. 联系经销商或美瑞克电子科技
Toot comple Exrer!	内	1. 重启负载
Test sample. Error:	门印奴据木米开市	2. 联系经销商或美瑞克电子科技
Looding colibration data Errorl	盐λ 标准数据 生版	1. 重启负载
Loading calibration data. Error:	蚁八秋准蚁 据大败	2. 联系经销商或美瑞克电子科技
		1. 重启负载
Loading parameters. Error!	载入系统参数失败	2. 联系经销商或美瑞克电
		子科技

附录 A 功能与对应版本

测试功能	高性能版	经济版 (E)
	(A)	
定态 CCH	\checkmark	\checkmark
定态 CCL	\checkmark	\checkmark
定态 CVH	\checkmark	\checkmark
定态 CVL	\checkmark	\checkmark
定态 CR	\checkmark	\checkmark
定态 CP	\checkmark	\checkmark
动态 CCDH	\checkmark	\checkmark
动态 CCDL	\checkmark	\checkmark
动态 CRD	\checkmark	×
动态 CPD	\checkmark	×
序列 SEQ	\checkmark	\checkmark
自动 Auto	\checkmark	\checkmark
过流 OCP	\checkmark	\checkmark
过功率 OPP	\checkmark	\checkmark
放电测试	\checkmark	\checkmark
负载效应测试	\checkmark	\checkmark
直流内阻测试	\checkmark	\checkmark
LED 测试	\checkmark	×
扫频测试	\checkmark	\checkmark
波形输出 Wave	\checkmark	\checkmark
复合模式 CV+CC		X
复合模式 CR+CC	\checkmark	X
复合模式 CP+CC	\checkmark	X
时间测量	\checkmark	\checkmark

附录B 电池拉载注意事项

测试大功率且高压的电池时,需注意相关应用的安全,特别是安全接线。在进行电池放 电测试的应用时,建议使用以下安装接线方式,确保电子负载使用上的安全操作。如图 6-1 所示。

图 6-1电子负载与电池接线示意图

SPST: 单刀开关, 其电流量要比电池的最大电流量大。

R: 电阻建议安装 100k Ω以上, 避免一下子瞬间给与电子负载极大电压。

FUS E: 先计算一下要放电多少电流, 选择适当的保险丝。

注意: 接线前必须保证SPST处于0FF状态。

操作方式说明:

在输入电压送进电子负载前,先切入 NO. 1 SPST,使电流流经 R 电阻,避免瞬间给与电子负载内部之功率晶体高电压,造成功率晶体受损老化。

5秒钟后,再切入NO.2 SPST,即开始电池放电试验。

若要停止放电试验,请先将电子负载按下 OFF ,接着将 NO.2 SPST 切至 OFF ,最后 将 NO.1 SPST 切至 OFF ,完成整个放电试验停止,使电池与电子负载切离。

第九章 保修及附件

9.1 保修

使用单位从本公司购买仪器者,自本公司发运日期起计算,从经销部门购买者,从经销单位发运日期 计算,主机保修1年。保修时应出示该仪器的保修卡,本公司对所有外发仪器实行终身维修服务。保修期内, 由于使用者操作不当而损坏仪器者,维修费用由用户承担。

9.2 附件

	z
RK00097六类网格跳线 1条	1
RK00098接线铜片护罩 14	ŕ
RK00099插拔式端子 14	ŕ
组合螺丝 1色]
合格证 1份	分
校准证书 18	分

用户收到仪器后,应开箱检查核对上述内容,若发生短缺,请和本公司或经销商联系。

使用手册说明:

本公司保留改变使用手册规格的权利,并不另行通知。

随着测试仪的改进、软硬件的升级,使用手册也会不断的更新和完善,请注意测试仪和说明的版本。 若手册有不详之处,请直接与本公司联系。美瑞克公司产品已获准和正在审批的中国专利的保护。

使用浏览器扫一扫 关注 **Rek**[®]深圳市美瑞克电子科技有限公司官方网站 体验更多优惠 更多服务

深圳市美瑞克电子科技有限公司

地址: 深圳市龙岗区南湾街道布澜路31号 李朗国际珠宝产业园B7栋西12楼(西7号专梯) 技术部:(0)13924600220 电话:0755-28604516(售后专线) 0755-83806889 http://www.chinarek.com 全国服务热线:400-876-9388